引论-数值最优化方法-课程学习笔记-1

引论

最优化问题(Optimization Problem)是数学和工程领域中的一种问题形式,目标是找到某个函数的最优解,通常通过选择某些变量的最优取值使目标函数达到最大或最小值。

最优化问题可以分类为:1. 无约束最优化问题, 2. 约束最优化问题

其形式一般如下:

min ⁡ f ( x ) , x ∈ R n \min f(x),x\in R^{n} minf(x),xRn

其中 f ( x ) ∈ R f(x)\in R f(x)R被称为目标函数, 这个问题的解被称为最优解, 记作 x ∗ x^* x, 而对应的 f ( x ∗ ) f(x^*) f(x)称为最优值

这个问题的求解就是无约束最优化问题求解

min ⁡ f ( x ) , x ∈ R n s . t     c i ( x ) = 0 , i ∈ ε , c i ( x ) ≥ 0 , i ∈ I \min f(x),x\in R^{n}\\s.t\ \ \ c_i(x)=0,i\in \varepsilon,\\c_i(x)\geq0,i\in I minf(x),xRns.t   ci(x)=0,iε,ci(x)0,iI

其中比之无约束最优化问题多出的s.t是"subject to"意为满足于, c i ( x ) ∈ R ( i ∈ ε ∪ I ) c_i(x)\in R(i\in \varepsilon \cup I) ci(x)R(iεI)称为约束函数
两行约束分别为等式约束不等式约束, ε \varepsilon ε I I I分别称为等式约束指标集合与不等式约束指标集合
这个问题的求解就是约束最优化问题求解

这两种形式是最优化问题的最一般的形式, 其他形式的最优化问题都可以变换成这两种形式

  • 举例理解:
  • 对于问题 min ⁡ f ( x ) = ( x − 1 ) 2 , x ∈ R \min f(x)=(x-1)^2,x \in R minf(x)=(x1)2,xR, 可求出 x ∗ = 1 x^*=1 x=1, 这就是完成了一个对无约束最优化问题的求解
  • 对于问题 min ⁡ f ( x ) = ( x − 1 ) 2 , x ∈ R , s . t .    x ≥ 2 \min f(x)=(x-1)^2,x \in R,s.t.\ \ x\ge 2 minf(x)=(x1)2,xR,s.t.  x2, 可求出 x ∗ = 2 x^*=2 x=2, 这就完成了一个对约束最优化问题的求解
  • 对于极大化问题 max ⁡ f ( x ) , x ∈ R , s . t .    c i ( x ) ≤ 0 \max f(x), x\in R,s.t.\ \ c_i(x)\le0 maxf(x),xR,s.t.  ci(x)0可以转化为 min ⁡ − f ( x ) , x ∈ R , s . t .    − c i ( x ) ≥ 0 \min -f(x),x\in R,s.t.\ \ -c_i(x)\ge0 minf(x),xR,s.t.  ci(x)0这种一般形式

除了上面提及的由是否有约束条件对最优化问题进行的分类, 最优化问题还可以有各种各样的分类方式:

  • 连续/离散最优化问题(变量是否连续)
  • 光滑/非光滑最优化问题(函数是否连续可微)
  • 线性/非线性最优化问题(目标函数或约束函数是否非线性)

对于实际问题的求解可以简化为:建模-求解-检验

  1. 建模:将实际问题抽象为最优化问题的一般形式
  2. 求解:根据问题的特性选择不同的最优化算法求出最优解(近似解)
  3. 检验:根据解对问题,模型,求解过程进行改进

本课中我们只对非线性光滑最优化问题, 讨论求解无约束最优化问题和约束最优化问题的基本算法和基本理论

在之后的2-5章内容我们将讨论无约束最优化问题,6-9章我们将讨论约束最优化问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值