BZOJ 4758 [Usaco2017 Jan] 区间dp->最长不下降+翻转子序列

dp------------------------ 同时被 2 个专栏收录
0 篇文章 0 订阅
1 篇文章 0 订阅

题目大意:

给一个序列(n<=50)求翻转任意子序列后所得的最大可能的最长不下降子序列。


解题思路:

夭寿啦!最长不下降子序列竟然不是nlongn维护!原因竟是…………

由于这道题需要翻转一次任意子序列,再加上n的范围较小,所以我们考虑使用区间dp。

定义dp[i][j][l][r]表示区间[i,j],区间左边的数是l,右边的数是r(l,r对答案有贡献)时,的答案。

转移就非常简单了

首先是对于相同的l,r,[i,j]可以由子区间[i+1,j]和[i,j-1]更新

接着是解决最长不下降:当l<=a[i]或a[j]<=r时,dp[i][j][l][r]可以由 dp[i+1][j][a[i]][r] , dp[i][j-1][l][a[j]] , dp[i+1][j-1][a[i]][a[j]]更新

翻转就和不下降差不多了,具体见代码:

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;

const int N=55;
int n;
int a[N];
int dp[N][N][N][N];

int dfs(int i,int j,int l,int r)
{
	if(dp[i][j][l][r]!=-1) return dp[i][j][l][r];
	if(i>j) return 0;
	if(i==j) return l<=a[i]&&a[i]<=r?1:0;
	
	int res=0;
	res=max(res,dfs(i+1,j,l,r));
	res=max(res,dfs(i,j-1,l,r));
	
	if(l<=a[i]&&a[i]<=r) res=max(res,dfs(i+1,j,a[i],r)+1);
	if(l<=a[j]&&a[j]<=r) res=max(res,dfs(i,j-1,l,a[j])+1);
	if(l<=a[i]&&a[i]<=a[j]&&a[j]<=r) res=max(res,dfs(i+1,j-1,a[i],a[j])+2);
	
	if(l<=a[j]&&a[j]<=r) res=max(res,dfs(i+1,j-1,a[j],r)+1);//翻转
	if(l<=a[i]&&a[i]<=r) res=max(res,dfs(i+1,j-1,l,a[i])+1);
	if(l<=a[j]&&a[j]<=a[i]&&a[i]<=r) res=max(res,dfs(i+1,j-1,a[j],a[i])+2);
	
	return dp[i][j][l][r]=res;
}

int main()
{
//	freopen("a.in","r",stdin);
//	freopen("a.out","w",stdout);
	
	int i,j,k;
	scanf("%d",&n);
	for(i=1;i<=n;++i) scanf("%d",&a[i]);
	memset(dp,-1,sizeof(dp));//必须初始化为-1,不然答案可能为0,最后会T 
	cout<<dfs(1,n,0,50);//至于为什么最小0最大50...hh 
	
	return 0;
}

结语:

*区间dp

所以说在数据范围较小的时候,区间dp是可以解决最长不下降之类的问题的,需谨记。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值