Spark面试题(约9.8w字)
Spark的任务执行流程
Spark的运行流程
Spark的作业运行流程是怎么样的?
Spark的特点
Spark源码中的任务调度
Spark作业调度
Spark的架构
Spark的使用场景
Spark on standalone模型、YARN架构模型(画架构图)
Spark的yarn-cluster涉及的参数有哪些?
Spark提交job的流程
Spark的阶段划分
Spark处理数据的具体流程说下
Sparkjoin的分类
Spark map join的实现原理
介绍下Spark Shuffle及其优缺点
什么情况下会产生Spark Shuffle?
为什么要Spark Shuffle?
Spark为什么快?
Spark为什么适合迭代处理?
Spark数据倾斜问题,如何定位,解决方案
Spark的stage如何划分?在源码中是怎么判断属于Shuffle Map Stage或Result Stage的?
Spark join在什么情况下会变成窄依赖?
Spark的内存模型?
Spark分哪几个部分(模块)?分别有什么作用(做什么,自己用过哪些,做过什么)?
RDD的宽依赖和窄依赖,举例一些算子
Spark SQL的GroupBy会造成窄依赖吗?
GroupBy是行动算子吗
Spark的宽依赖和窄依赖,为什么要这么划分?
说下Spark中的Transform和Action,为什么Spark要把操作分为Transform和Action?常用的列举一些,说下算子原理
Spark的哪些算子会有shuffle过程?

本文深入探讨了Spark的面试重点,包括任务执行流程、Spark的运行和作业调度、架构与使用场景,详细阐述了Shuffle机制、内存模型、数据倾斜问题及解决方案。同时,涵盖了Spark SQL、Spark Streaming、容错机制、性能调优以及RDD、DataFrame和DataSet的差异。此外,还讨论了Spark在YARN上的部署、DAG生成和Stage划分,以及最新版Spark 3.0的特性。
最低0.47元/天 解锁文章
2571

被折叠的 条评论
为什么被折叠?



