2 导数与微分
2.1导数的概念
引例:速度,加速度:很熟悉了。切线问题:我们不能说一条直线与一段弧长只有一个交点就说该直线是切线。MN是一段弧长上的一条割线,旋转MN直至MN趋于0,该切线的斜率则是导数。
定义:
表示函数f(x)在点的变化率。
单侧导数:(右导数)
导数是一个极限,极限存在的充要条件是左极限等于右极限,所以导数存在的充要条件:也是左导等于右导。
函数可导和连续性之间的关系:可导一定连续,反过来理解:你见过在间断点上求导数的吗。可导意味着和
是同阶无穷小,
=0,

本文详细探讨了导数与微分的概念,包括导数作为函数变化率的定义,函数求导法则,如线性、乘法、除法、复合函数和反函数的导数。还介绍了高阶导数、隐函数及参数方程确定的函数的导数,以及微分的定义和几何意义。微分在近似计算中有着广泛应用,例如用于估算数值。
最低0.47元/天 解锁文章

800

被折叠的 条评论
为什么被折叠?



