
《深度学习基础50例》
文章平均质量分 91
本专栏使用的是TensorFlow2框架,旨在帮助新人打好深度学习基础。📌不支持超级会员订阅,📌只对直接购买的用户提供服务。
优惠券已抵扣
余额抵扣
还需支付
¥159.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
K同学啊
“365天深度学习训练” 报名中,报名微信:mtyjkh_
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《深度学习100例》数据和代码
文章目录卷积神经网络篇 ✨循环神经网络篇 ????生成对抗网络篇 ????卷积神经网络篇 ✨深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天数据:???? 数据会在运行过程中自动下载代码:????.ipynb文件 (提取码:lzcn)| ????.py文件(提取码:xl6r)深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天数据:???? 数据会在运行过程中自动下载代码:????.ipynb文件 (提取码:j4ui)| ????原创 2021-09-11 09:10:28 · 19753 阅读 · 14 评论 -
深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
文章目录一、前期工作1. 设置GPU2. 导入数据3. 查看数据二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集三、调用官方网络模型四、设置动态学习率五、编译六、训练模型七、模型评估八、保存and加载模型九、预测一、前期工作今天的东西可能过于硬核!你准备好了吗?⏳???? 我的环境:语言环境:Python3.6.5编译器:jupyter notebook深度学习环境:TensorFlow2.4.1数据链接: https://pan.baidu.com/s/1cV原创 2021-07-14 07:51:53 · 4596 阅读 · 37 评论 -
深度学习100例-卷积神经网络(LeNet-5)深度学习里的“Hello Word” | 第22天
大家好,我是「K同学啊 」!前几天翻译了一篇讲十大CNN结构的文章(「多图」图解10大CNN架构),原作者思路十分清晰,从时间线上,将近年来CNN发展过程中一些比较重要的网络模型做了一一介绍。我发现其中好像有几个网络模型并没有在《深度学习100例》出现,接下一段时间我将围绕这些网络模型进行实战讲解。在90年代,由于支持向量机(Support Vecotr Machine,SVM)等算法的发展,深度学习的发展受到了很大的阻碍(尽管Geoffery Hinton在1986年发明的BP算法(Backprop原创 2021-08-14 14:58:31 · 2682 阅读 · 5 评论 -
深度学习100例-生成对抗网络(DCGAN)生成动漫人物 | 第20天
文章目录一、前言二、什么是生成对抗网络?1. 设置GPU2. 加载和准备数据集三、创建模型1. 生成器2. 判别器四、定义损失函数和优化器1. 判别器损失2. 生成器损失五、保存检查点六、定义训练循环七、训练模型1. 恢复模型参数2. 训练模型3. 创建 GIF八、同系列作品九、数据+模型一、前言???? 我的环境:语言环境:Python3.6.5编译器:jupyter notebook深度学习环境:TensorFlow2.4.1???? 深度学习新人必看:《小白入门深度学习》小白入门深原创 2021-08-30 09:10:24 · 4664 阅读 · 23 评论 -
深度学习100例 | 第24天-卷积神经网络(Xception):动物识别
大家好,我是『K同学啊』!之前写了一篇名为 「多图」图解10大CNN架构 的文章后,发现有些模型在我们的《深度学习100例》中并未介绍,后来不是说填坑嘛,之前已经写一篇 深度学习100例-卷积神经网络(LeNet-5)深度学习里的“Hello Word” | 第22天 来填补LeNet-5的坑。今天继续写一篇关于Xception模型的实例,实现了四种动物(狗、猫、鸡、马)的识别分类。希望大家多多支持,点赞、收藏、评论。本文的重点是:Xception模型的搭建深度可分离卷积文章目录一、前期工作1原创 2021-09-03 09:20:57 · 3217 阅读 · 2 评论 -
深度学习100例 | 第25天-卷积神经网络(CNN):中文手写数字识别
大家好,我是『K同学啊』!接着上一篇文章 深度学习100例 | 第24天-卷积神经网络(Xception):动物识别,我用Xception模型实现了对狗、猫、鸡、马等四种动物的识别,带大家了解了Xception的构建。这次我们来 实现一下中文版的 手写数字识别 ,听到手写数字识别或许会觉得简单,今天可能不一定哈。本次的重点:数据检查:在开始之前做一系列检查避免后期由于数据原因出现的bug。各项指标评估部分???? 我的环境:语言环境:Python3.6.5编译器:jupyter note原创 2021-09-07 09:00:18 · 2343 阅读 · 27 评论 -
深度学习100例 | 第33天:迁移学习-实战案例教程
我的知乎 我的微信公众号 我的CSDN 下载本文源码+数据 需要帮助.Ctrl+D:收藏本页面在本教程中,你将学习如何使用迁移学习通过预训练网络对猫和狗的图像进行分类。预训练模型是一个之前基于大型数据集(通常是大型图像分类任务)训练的已保存网络。迁移学习通常应用在数据集过少以至于无法有效完成模型的训练,故而寻求在预训练模型的基础上进行训练、微调来解决这个问题。当然,即使数据集不那么小,我们也可以通过预训练模型来加快模型的训练。在本文中,我们无需(重新)训练整个模型,基础卷...原创 2021-10-18 15:30:00 · 4462 阅读 · 8 评论 -
深度学习100例 | 第27天-卷积神经网络(CNN):艺术作品识别
大家好,我是K同学啊!今天的案例是世界名画的分类识别???? 我的环境:语言环境:Python3.6.5编译器:jupyter notebook深度学习环境:TensorFlow2.4.1数据和代码:????【传送门】???? 来自专栏:《深度学习100例》如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》小白入门深度学习 | 第一篇:配置深度学习环境小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook小白入门深度学习 | 第原创 2021-12-27 10:10:11 · 2130 阅读 · 2 评论 -
深度学习100例 | 第32天-GRU模型:算法生成小说
文章目录一、导入数据1. 导入文件2. 文本数字化二、构建GRU模型三、编译四、训练五、重新加载模型六、生成文本七、同系列作品???? 我的环境:语言环境:Python3.6.5编译器:jupyter notebook深度学习环境:TensorFlow2.4.1数据和代码:????【传送门】???? 来自专栏:《深度学习100例》如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》一、导入数据from tensorflow import kera原创 2021-12-23 13:56:04 · 3237 阅读 · 2 评论 -
深度学习100例 | 第36天:FMD材料识别
🔗 运行环境:python3🚩 作者:K同学啊🥇 选自专栏:《深度学习100例》🔥 精选专栏:《新手入门深度学习》📚 推荐专栏:《Matplotlib教程》🧿 优秀专栏:《Python入门100题》大家好,我是K同学啊!在100例系列之前文章中,我们对图像识别(图片分类)这类任务都是通过image_dataset_from_directory()方法直接采用默认的标签编码为整数的加载方式,这次我将采用标签编码为向量的形式(可参考one-hot编码)进行加载,大家注意查看代码与以往有何不.原创 2022-03-29 12:00:00 · 3229 阅读 · 17 评论 -
深度学习100例 | 第43天:文本卷积神经网络(TextCNN)新闻文本分类实战
🚩 本文作者:微学AI、K同学啊🥇 精选专栏:《深度学习100例》🔥 推荐专栏:《新手入门深度学习》📚 选自专栏:《Matplotlib教程》🧿 优秀专栏:《Python入门100题》大家好,我是K同学啊!今天给大家带来一个简单的中文新闻分类实例,采用的是TextCNN算法模型。TextCNN的主要流程是:获取文本的局部特征:通过不同的卷积核尺寸来提取文本的N-Gram信息(N-Gram是一种基于统计语言模型的算法),然后通过最大池化操作来突出各个卷积操作提取的最关键信息,拼接后通过全连接.原创 2022-05-10 10:49:38 · 1899 阅读 · 0 评论 -
深度学习100例-卷积神经网络(CNN)猴痘病识别 | 第45天
本文为内部限免文章(版权归K同学啊所有)参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可DL+45。原创 2022-08-11 14:30:46 · 2251 阅读 · 3 评论 -
深度学习100例 | 第44天:密码破译
🚩 本文作者:K同学啊🥇 精选专栏:《深度学习100例》🔥 推荐专栏:《新手入门深度学习》📚 选自专栏:《Matplotlib教程》🧿 优秀专栏:《Python入门100题》大家好,我是K同学啊!今天大家一起做一个深度学习在密码破译方面的应用,本文仅供参考学习,请勿用作其他用途!本文重点如下:读取并合并Excel文件中的多个子表构建一个单输入多输出模型单输入多输出与单输入单输出DL程序在构建流程上有何异同我们程序的目标是 实现由 公开哈希 预测 秘密哈希 与 secret_sa.原创 2022-05-18 13:48:53 · 1163 阅读 · 4 评论