一文讲透Spark中的分区和分桶的不同

一.数据准备

partition.txt:
b,2
c,1
b,1
d,3
a,2
b,1

二.Spark Core中的分区

val rdd = sc.textFile("D:\\study\\workspace\\spark-sql-train\\input\\partition.txt")
  .map(_.split(",")).map(x => (x(0), x(1)))

rdd.saveAsTextFile("output/level")

直接读取后保存,默认水平分区。

part-00000:
(b,2)
(c,1)
(b,1)
part-00001:
(d,3)
(a,2)
(b,1)
rdd.partitionBy(new HashPartitioner(2)).saveAsTextFile("output/hash")

hash分区(partitionBy这种算子只在键值对数据上会出现):

part-00000:
(b,2)
(b,1)
(d,3)
(b,1)
part-00001:
(c,1)
(a,2)
rdd.partitionBy(new RangePartitioner(2, rdd)).saveAsTextFile("output/range")

range分区(分区内不保证有序):

part-00000:
(b,2)
(b,1)
(a,2)
(b,1)
part-00001:
(c,1)
(d,3)

三.Spark SQL中的分区和分桶(用HQL)

rdd.toDF("col1", "col2").groupBy("col1").count()
  .write.format("json").mode("overwrite").save("output/sql")

groupBy有4个key,则有5个json文件,一个为空,其他每个文件保存一个key。
请添加图片描述

rdd.toDF("col1", "col2").orderBy("col1")
  .write.format("json").mode("overwrite").save("output/sql")

orderBy有4个key,则有4个json文件,每个文件保存一个key。
请添加图片描述

上面这些都是一个key一个文件,key过多可能会有小文件问题,我的理解是都写入到数据库中

按第一列分区,第二列分桶。

import spark.implicits._
rdd.toDF("col1", "col2").orderBy("col1")
  .write.format("json")
  .partitionBy("col1")
  .bucketBy(2, "col2")
  .saveAsTable("bucket")

请添加图片描述
除了上面这种情况,其他分桶数都会出错。

数据量大的话,就有4×2=8个文件。只分桶只有两个文件。
如果寻找col1 = d的文件,分区后只需要搜索两个小文件就行,不分区,需要搜索两个大的文件。
只需要把文件夹当作一个索引就行请添加图片描述
最好直接用hive的分区分桶,spark sql的bucket指定数量绝大部分情况没用。生成文件的数量还是按key的种类数量来算的,打开enableHiveSupport(),用hive的语句吧。

参考文章:为什么Spark saveAsTable with bucketBy创建数千个文件?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值