组合问题(1至4)

前三道组合问题都是很简单的用递归就能解决的

但是第四道用回溯就超时了,当然可以用记忆化搜索的方式,但是我看了题解后,决定记录一下最简单的动态规划的思路

class Solution {
    private List<List<Integer>> res = new LinkedList<>();
    private void dfs(int n, int k, LinkedList<Integer> ls, boolean sign[], int index){

        if(ls.size() > k){
            return;
        }

        if(ls.size() == k){
            res.add(new LinkedList<>(ls));
            return;
        }

        for(int i=index; i<=n; i++){

            if(sign[i]){
                continue;
            }
            ls.addLast(i);
            sign[i] = true;
            dfs(n, k, ls, sign, i);
            sign[i] = false;
            ls.removeLast();
        }

    }

    public List<List<Integer>> combine(int n, int k) {
        List<Integer> ls = new LinkedList<>();
        boolean sign[] = new boolean[n+1];
        dfs(n, k, (LinkedList<Integer>) ls, sign, 1);
        return res;
    }
}

 

class Solution {
     List<List<Integer>> res = new LinkedList<>();

    private void dfs(int[] candidates, int target, int sum, LinkedList<Integer> ls, int index){

        if(sum > target){
            return;
        }
        if(sum == target){
            res.add(new LinkedList<>(ls));
            return;
        }

        for(int i=index; i<candidates.length; i++){
            // 剪枝
            if(candidates[i] > target){
                break;
            }
            ls.addLast(candidates[i]);
            dfs(candidates, target, sum + candidates[i], ls, i);
            ls.removeLast();
        }
    }

    public List<List<Integer>> combinationSum(int[] candidates, int target) {

        LinkedList<Integer> ls = new LinkedList<>();
        Arrays.sort(candidates);
        dfs(candidates, target, 0, ls, 0);

        return res;
    }
}

 

class Solution {
  
    List<List<Integer>> res;
    Set<List<Integer>> set = new HashSet<>();

    private void dfs(int[] candidates, int target, boolean sign[], int sum, LinkedList<Integer> ls, int index){

        if(sum > target){
            return;
        }

        if(sum == target){
            set.add(new LinkedList<>(ls));
            return;
        }

        for(int i=index; i<candidates.length; i++){
            if(candidates[i] > target){
                break;
            }
            if(sign[i]){
                continue;
            }

            sign[i] = true;
            sum += candidates[i];
            ls.addLast(candidates[i]);
            dfs(candidates, target, sign, sum, ls, i);

            ls.removeLast();
            sum -= candidates[i];
            sign[i] = false;

        }

    }

    public List<List<Integer>> combinationSum2(int[] candidates, int target) {

        if(candidates.length == 0){
            return res;
        }

        Arrays.sort(candidates);

        LinkedList<Integer> ls = new LinkedList<>();
        boolean sign[] = new boolean[candidates.length];
        dfs(candidates, target, sign, 0, ls, 0);

        res = new LinkedList<>();
        for(List<Integer> list: set){
            res.add(list);
        }

        return res;
    }
}

下面这题如果不用记忆化搜索的画,就超时了......

dp[i] :对于给定的由正整数组成且不存在重复数字的数组,和为 i 的组合的个数。

nums=[1, 3, 4], target=7;
     * dp[7] = dp[6] + dp[4] + dp[3]
     * 即:7 的组合数可以由三部分组成,1 和 dp[6],3 和 dp[4], 4 和dp[3];

public class Solution {

    /**
     * 这里状态定义就是题目要求的,并不难,状态转移方程要动点脑子,也不难:
     * 状态转移方程:dp[i]= dp[i - nums[0]] + dp[i - nums[1]] + dp[i - nums[2]] + ... (当 [] 里面的数 >= 0)
     * 特别注意:dp[0] = 1,表示,如果那个硬币的面值刚刚好等于需要凑出的价值,这个就成为 1 种组合方案
     * 再举一个具体的例子:nums=[1, 3, 4], target=7;
     * dp[7] = dp[6] + dp[4] + dp[3]
     * 即:7 的组合数可以由三部分组成,1 和 dp[6],3 和 dp[4], 4 和dp[3];
     *
     * @param nums
     * @param target
     * @return
     */
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        // 这个值被其它状态参考,设置为 1 是合理的
        dp[0] = 1;

        for (int i = 1; i <= target; i++) {
            for (int num : nums) {
                if (num <= i) {
                    dp[i] += dp[i - num];
                }
            }
        }
        return dp[target];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值