As Harry Potter series is over, Harry has no job. Since he wants to make quick money, (he wants everything quick!) so he decided to rob banks. He wants to make a calculated risk, and grab as much money as possible. But his friends - Hermione and Ron have decided upon a tolerable probability P of getting caught. They feel that he is safe enough if the banks he robs together give a probability less than P.
InputInput starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains a real number P, the probability Harry needs to be below, and an integer N (0 < N ≤ 100), the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj (0 < Mj ≤ 100) and a real number Pj . Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj. A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
OutputFor each case, print the case number and the maximum number of millions he can expect to get while the probability of getting caught is less than P.
Sample Input3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
Sample OutputCase 1: 2
Case 2: 4
Case 3: 6
NoteFor the first case, if he wants to rob bank 1 and 2, then the probability of getting caught is 0.02 + (1 - 0.02) * .03 = 0.0494 which is greater than the given probability (0.04). That's why he has only option, just to rob rank 2.
概率做01背包
一个人抢钱,每个物品有一个危险概率(double),一个价值,问低于p危险概率下,获得的最大收益
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1e2+5;
double dp[100005];
struct node{
int value;
double p;
}a[maxn];
int main()
{
int t;
cin >> t;
for(int k = 1; k <= t; k++)
{
double va;
int n ;
cin >> va >> n;
int sum = 0;
for(int i = 0; i < n; i++)
{
cin >> a[i].value >> a[i].p;
a[i].p = 1 - a[i].p;
sum += a[i].value;
}
memset(dp, 0, sizeof dp);
dp[0] = 1;
for(int i = 0; i < n; i++)
for(int j = sum; j >= a[i].value; j--)
dp[j] = max(dp[j], dp[j-a[i].value]*a[i].p);
int i;
for(i = sum; i >= 0; i--)
{
if(1-dp[i] <= va)
break;
}
printf("Case %d: %d\n", k, i);
}
return 0;
}
本文介绍了一个基于概率的01背包问题变种,主角哈利波特计划抢劫银行以获取最大金额,同时确保被捕的概率低于某一阈值。文章通过一个具体的示例输入输出解释了问题背景,并提供了一段C++代码实现解决方案,利用动态规划算法来计算哈利波特可以在不被捕的情况下期望获得的最大金额。
274

被折叠的 条评论
为什么被折叠?



