10. 边缘保留滤波EPF-cv2.bilateralFilter()、cv2.pyrMeanShiftFiltering()

本文介绍了边缘保留滤波(EPF)的概念,强调了在图像处理中保持边缘的重要性。详细阐述了两种实现方式:高斯双边滤波和均值迁移滤波。对于高斯双边滤波,通过`cv2.bilateralFilter()`函数,调整参数以达到保边去噪的效果。而对于均值迁移滤波,使用`cv2.pyrMeanShiftFiltering()`实现图像聚类和分割,其中`sp`和`sr`参数影响滤波结果。文章提供了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是EPF?

     高斯模糊: 基于权重,权重只考虑像素空间的分布,中间的权重大,边缘的权重小。没有考虑像素值之间的差异问题,没有考虑边缘。
  边缘保留滤波: 像素之间的差异很大,说明是显著特征,如果直接平滑(滤波),显著特征会消失。像素之间差异大的地方通常是边缘,所以边缘保留滤波处理后的图片,在平滑(滤波)的情况下,依旧能够保留图像的边缘.。

2. 实现方式:

2.1 高斯双边滤波-cv2.bilateralFilter

双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空间与信息和灰度相似性,达到保边去噪的目的,具有简单、非迭代、局部处理的特点。之所以能够达到保边去噪的滤波效果是因为滤波器由两个函数构成:一个函数是由几何空间距离决定滤波器系数,另一个是由像素差值决定滤波器系数.

  • 实现函数:cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace)
  • 参数说明:
  • src:输入图像

  • d:过滤时周围每个像素领域的直径

  • sigmaColor:Sigma_color较大,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值