神经网络层的FLOPs计算

本文详细介绍了神经网络中不同层的FLOPs(浮点运算次数)计算,包括标准卷积、深度可分离卷积、全连接层、池化层、ReLU和Sigmoid层的FLOPs计算方法。FLOPs作为衡量算法复杂度的指标,有助于理解模型的计算量和效率。
摘要由CSDN通过智能技术生成

神经网络各个层FLOPs的计算

• FLOPS 注意全部大写 是floating point of per second的缩写,意指每秒浮点运算次数。可以理解为计算速度,用来衡量硬件的性能。
• FLOPs 是floating point of operations的缩写,是浮点运算次数,理解为计算量,可以用来衡量算法/模型复杂度。(ps:FLOPs 是模型推理时间的一个参考量,但并不能百分百表示该模型推理时间的长短,因为乘法和加法计算不一样,乘法的时间一般是加法时间的四倍,但现在有很多优化卷积层的计算算法,可能把乘法计算时间缩为加法的两倍不等,所以FLOPs只是个估量的指标,不是决定推理时间长短的指标。即FLOPs越小并不代表着模型推理时间越短)
定义在这篇论文有:
在这里插入图片描述

这篇论文PRUNING CONVOLUTIONAL NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE所描述的计算公式跟博客所搜的不一样,经推导,大佬的这篇博客https://zhuanlan.zhihu.com/p/366184485的推导非常不错,通俗易懂。在该博客上提及的就不多赘述。
1.标准卷积的FLOPs计算
标准卷积的推导过程,大佬们描述得很清楚,在此只贴上手绘的卷积过程图示,如图1所示:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>