一.概念梳理
例如:
对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列。
请注意:子序列不是子集,它和原始序列的元素顺序是相关的。
(2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它为序列A和序列B的公共子序列。
例如:
序列1,8,7是它们的一个公共子序列。
请注意: 空序列是任何两个序列的公共子序列。
仍然用序列1,3,5,4,2,6,8,7和序列1,4,8,6,7,5
请大家用集合的观点来理解这些概念,子序列、公共子序列以及最长公共子序列都不唯一,所以我们通常说一个最长公共子序列,但显然最长公共子序列的长度是一定的。
因为最长公共子序列不唯一,让我们把问题简化,如何求出两个序列的最长公共子序列长度呢?
你首先能想到的恐怕是暴力枚举?那我们先来看看:序列A有 2^n 个子序列,序列B有 2^m 个子序列,如果任意两个子序列一一比较,比较的子序列高达 2^(n+m) 对,这还没有算具体比较的复杂度。
或许你说,只有长度相同的子序列才会真正进行比较。那么忽略空序列,我们来看看:对于A长度为1的子序列有C(n,1)个,长度为2的子序列有C(n,2)个,……长度为n的子序列有C(n,n)个。对于B也可以做类似分析,即使只对序列A和序列B长度相同的子序列做比较,那么总的比较次数高达:
C(n,1)*C(m,1)*1 + C(n,2) * C(m,2) * 2+ …+C(n,p) * C(m,p)*p
二.动态规划
1.最长公共子序列的结构
设序列X={Y1,Y2,...Yn}和Y={Y1,Y2,...Ym}的最长公共子序列为 Z= {Z1,Z2,...Zk},则
(1)若Xm=Yn, 则Zk = Xm = Yn ,且Zk-1 是 Xm-1 和Y n-1 的最长公共子序列。
(2)若Xm!=Yn ,且Zk!=Xm,则Z是Xm-1和Y的最长公共子序列。
(3)若Xm!=Yn ,且Zk!=Yn,则Z是X和Yn-1的最长公共子序列。
LCS问题具有最优子结构
2.子问题的递归结构
由最长公共子序列问题的最优子结构性质可知,要找出X={X1,X2,...Xn}和Y={Y1,Y2,...Ym}的最长公共子序列,可按以下方式递归进行。当Xm= Yn 时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上 Xm(=Yn) 即可得X和Y的最长公共子序列,当 Xm !=Yn时,必须解两个子问题,既找出 Xm 和 Yn 的一个最长公共子序列及 X 和 Yn-1的一个最长公共子序列。这两个公共子序列中较长者即为X和Y的最长公共子序列。
由此递归结构容易看到,最长公共子序列问题具有子问题重叠性质。例如,在计算X和Y的最长公共子序列时,可能要计算X和Yn-1及Xm-1的最长公共子序列。而这两个子问题都包括一个公共子问题,既计算Xm-1和Yn-1的最长公共子序列。
首先建立子问题最优值的递归关系。用C[ i ][ j ] 记录序列Xi和 Yj的最长公共子序列的长度。其中,X={X1,X2,...Xn}和Y={Y1,Y2,...Ym}。当i=0 或 j=0 时,空序列是 Xi 和 Yj 的最长公共子序列。故此C[ i ][ j ] = 0. 其他情况下,由最优子结构性质可建立递归关系如下:

四.计算最优值
直接利用递归容易写出计算C[ i ][ j ]的递归算法, 但其计算时间是随输入长度指数增长的,由于在所考虑的子问题空间中,共有0(m,n)个不同的 子问题,因此,用动态规划算法自顶向上计算最优值能提高算法效率。
计算最长刚刚子序列长度的动态规划算法LCSlength以序列X = {X1,X2,...Xn}和Y = { Y1,Y2,... Ym} 作为输入,输入两个数组C 和B,其中C [ I ][ J ]储存Xi 和 Yj 的最长公共子序列的长度, B [ i ][ j ]记录 C [ i ][ j ]的值是由哪个子问题解得到的,这在构造最长公共子序列时要用到。问题的最优值, 既 X 和 Y 的最长公共子序列的长度记录 C [ M ] [ N ]中。
void LCSlength(int m , int n, char *x, char *y ,int c[][MAX],int b[][MAX])
{
int i,j;
for(i=0;i<=m;i++)c[i][0]=0;
for(j=0;j<=n;j++)c[0][j]=0;
for(i =1;i<=m;i++)
{
for( j=1;j<=n;j++)
{
if(x[i-1]==y[j-1])
{
c[i][j]=c[i-1][j-1]+1;
b[i][j]=1;
}
else if(c[i-1][j]>=c[i][j-1])
{
c[i][j]=c[i-1][j];
b[i][j]=2;
}
else
{
c[i][j]=c[i][j-1];
b[i][j]=3;
}
}
}
}
五.构造最长公共子序列
由算法LCSlength计算得到的数组 B 可以用于快速构造序列 X = {X1,X2,...Xn}和Y = { Y1,Y2,... Ym} 的最长公共子序列。首先从 b [ m ] [ n ] 开始,依次在数组b中搜索。当在 b[ i ][ j ] = 1 时,表示Xi 和 Yj 的最长公共子序列是由 X i-1 和 Y j-1 的最长公共子序列在尾部加上 Xi 所得到的子序列。当 b [ i ] [ j ] = 2 时,表示Xi 和 Y j 的最长公共子序列与 Xi-1 和Y i的最长公共子序列相同。
当 b [ i ] [ j ] = 3 时,表示Xi 和 Y i 的最长公共子序列与 Xi-1 和Y j-1 的最长公共子序列相同。
下面的算法LCS实现依据 b的内容打印出Xi 和Yj 的最长公共子序列。通过算法调用LCS 便可打印出序列X和Y的最长公共子序列。
void LCS(int i,int j , char *x,int b[][MAX])
{
if(i==0||j==0)
return ;
if(b[i][j]==1)
{
LCS(i-1,j-1,x,b);
cout<<x[i-1]<<" ";
}
else if (b[i][j]==2)
{
LCS(i-1,j,x,b);
}
else
LCS(i,j-1,x,b);
}
可见我们在计算长度LCS的时候只要多记录一些信息,就可以利用这些信息恢复出一个最长公共子序列来。就好比我们在迷宫里走路,走到每个位置的时候记录下我们时从哪个方向来的,就可以从终点回到起点一样。

代码一:
#include<iostream>
#include<cstring>
#define MAX 50
using namespace std;
//1 x[m]==y[n]==z[k] z[k-1]是X[m-1] Y[n-1]的最长公共子序列
//2 x[m]!=y[n] 且z[k]!=x[m] Z是x[m-1]与Y的最长公共子序列
//3 x[m]!=y[n] 且z[k]!= y[n] Z是X和y[n-1]的最长公共子序列
void LCSlength(int m , int n, char *x, char *y ,int c[][MAX],int b[][MAX])
{
int i,j;
for(i=0;i<=m;i++)c[i][0]=0;
for(j=0;j<=n;j++)c[0][j]=0;
for(i =1;i<=m;i++)
{
for( j=1;j<=n;j++)
{
if(x[i-1]==y[j-1])
{
c[i][j]=c[i-1][j-1]+1;
b[i][j]=1;
}
else if(c[i-1][j]>=c[i][j-1])
{
c[i][j]=c[i-1][j];
b[i][j]=2;
}
else
{
c[i][j]=c[i][j-1];
b[i][j]=3;
}
}
}
}
void LCS(int i,int j , char *x,int b[][MAX])
{
if(i==0||j==0)
return ;
if(b[i][j]==1)
{
LCS(i-1,j-1,x,b);
cout<<x[i-1]<<" ";
}
else if (b[i][j]==2)
{
LCS(i-1,j,x,b);
}
else
LCS(i,j-1,x,b);
}
int main()
{
char x[MAX]={"ABCBDAB"};
char y[MAX]={"BDCABA"} ;
int b[MAX][MAX],c[MAX][MAX] ;
int m,n;
m=strlen(x);
n=strlen(y);
LCSlength(m,n,x,y,c,b);
LCS(m,n,x,b) ;
return 0;
}
代码二:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int LCSLength(char* str1, char* str2, int **b)
{
int i,j,length1,length2,len;
length1 = strlen(str1);
length2 = strlen(str2);
//双指针的方法申请动态二维数组
int **c = new int*[length1+1]; //共有length1+1行
for(i = 0; i < length1+1; i++)
c[i] = new int[length2+1];//共有length2+1列
for(i = 0; i < length1+1; i++)
c[i][0]=0; //第0列都初始化为0
for(j = 0; j < length2+1; j++)
c[0][j]=0; //第0行都初始化为0
for(i = 1; i < length1+1; i++)
{
for(j = 1; j < length2+1; j++)
{
if(str1[i-1]==str2[j-1])//由于c[][]的0行0列没有使用,c[][]的第i行元素对应str1的第i-1个元素
{
c[i][j]=c[i-1][j-1]+1;
b[i][j]=0; //输出公共子串时的搜索方向
}
else if(c[i-1][j]>c[i][j-1])
{
c[i][j]=c[i-1][j];
b[i][j]=1;
}
else
{
c[i][j]=c[i][j-1];
b[i][j]=-1;
}
}
}
/*
for(i= 0; i < length1+1; i++)
{
for(j = 0; j < length2+1; j++)
printf("%d ",c[i][j]);
printf("\n");
}
*/
len=c[length1][length2];
for(i = 0; i < length1+1; i++) //释放动态申请的二维数组
delete[] c[i];
delete[] c;
return len;
}
void PrintLCS(int **b, char *str1, int i, int j)
{
if(i==0 || j==0)
return ;
if(b[i][j]==0)
{
PrintLCS(b, str1, i-1, j-1);//从后面开始递归,所以要先递归到子串的前面,然后从前往后开始输出子串
printf("%c",str1[i-1]);//c[][]的第i行元素对应str1的第i-1个元素
}
else if(b[i][j]==1)
PrintLCS(b, str1, i-1, j);
else
PrintLCS(b, str1, i, j-1);
}
int main(void)
{
char str1[100],str2[100];
int i,length1,length2,len;
printf("请输入第一个字符串:");
gets(str1);
printf("请输入第二个字符串:");
gets(str2);
length1 = strlen(str1);
length2 = strlen(str2);
//双指针的方法申请动态二维数组
int **b = new int*[length1+1];
for(i= 0; i < length1+1; i++)
b[i] = new int[length2+1];
len=LCSLength(str1,str2,b);
printf("最长公共子序列的长度为:%d\n",len);
printf("最长公共子序列为:");
PrintLCS(b,str1,length1,length2);
printf("\n");
for(i = 0; i < length1+1; i++)//释放动态申请的二维数组
delete[] b[i];
delete[] b;
system("pause");
return 0;
}
代码三:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int max1(int m,int n)
{
if(m>n)
return m;
else
return n;
}
int max2(int x,int y,int z,int k,int m,int n)
{
int max=-1;
if(x>max)
max=x;
if(y>max)
max=y;
if(z>max)
max=z;
if(k>max)
max=k;
if(m>max)
max=m;
if(n>max)
max=n;
return max;
}
int LCSLength(char* str1, char* str2, char* str3) //求得三个字符串的最大公共子序列长度并输出公共子序列
{
int i,j,k,length1,length2,length3,len;
length1 = strlen(str1);
length2 = strlen(str2);
length3 = strlen(str3);
//申请动态三维数组
int ***c = new int**[length1+1]; //共有length1+1行
for(i = 0; i < length1+1; i++)
{
c[i] = new int*[length2+1]; //共有length2+1列
for(j = 0; j<length2+1; j++)
c[i][j] = new int[length3+1];
}
for(i = 0; i < length1+1; i++)
{
for(j = 0; j < length2+1; j++)
c[i][j][0]=0;
}
for(i = 0; i < length2+1; i++)
{
for(j = 0; j < length3+1; j++)
c[0][i][j]=0;
}
for(i = 0; i < length1+1; i++)
{
for(j = 0; j < length3+1; j++)
c[i][0][j]=0;
}
for(i = 1; i < length1+1; i++)
{
for(j = 1; j < length2+1; j++)
{
for(k = 1; k < length3+1; k++)
{
if(str1[i-1]==str2[j-1] && str2[j-1]==str3[k-1])
c[i][j][k]=c[i-1][j-1][k-1]+1;
else if(str1[i-1]==str2[j-1] && str1[i-1]!=str3[k-1])
c[i][j][k]=max1(c[i][j][k-1],c[i-1][j-1][k]);
else if(str1[i-1]==str3[k-1] && str1[i-1]!=str2[j-1])
c[i][j][k]=max1(c[i][j-1][k],c[i-1][j][k-1]);
else if(str2[j-1]==str3[k-1] && str1[i-1]!=str2[j-1])
c[i][j][k]=max1(c[i-1][j][k],c[i][j-1][k-1]);
else
{
c[i][j][k]=max2(c[i-1][j][k],c[i][j-1][k],c[i][j][k-1],c[i-1][j-1][k],c[i-1][j][k-1],c[i][j-1][k-1]);
}
}
}
}
len=c[length1][length2][length3];
for(i = 1; i < length1+1; i++) //释放动态申请的三维数组
{
for(j = 1; j < length2+1; j++)
delete[] c[i][j];
delete[] c[i];
}
delete[] c;
return len;
}
int main(void)
{
char str1[100],str2[100],str3[100];
int len;
printf("请输入第一个字符串:");
gets(str1);
printf("请输入第二个字符串:");
gets(str2);
printf("请输入第三个字符串:");
gets(str3);
len=LCSLength(str1,str2,str3);
printf("最长公共子序列的长度为:%d\n",len);
system("pause");
return 0;
}
1714

被折叠的 条评论
为什么被折叠?



