call、bind、apply 的用法和区别

call、apply、bind 的作用是改变函数运行时 this 的指向。
所以先说清楚 this。
以下是函数的调用方法:
一、方法调用模式:
当一个函数被保存为对象的一个方法时,如果调用表达式包含一个提取属性的动作,那么它就是被当做一个方法来调用,此时的 this 被绑定到这个对象。

var a=1;
var obj1={
	a:2,
	fn:function(){
		console.log(this.a);
	} 
}
obj1.fn();//2

此时的 this 是指 obj1 这个对象,obj1.fn()实际上是 obj1.fn.call(obj1)。事实上,谁调用这个函数,this 就是谁。补充一下,DOM 对象绑定事件也属于方法调用模式,因此它绑定的 this 就是事件源 DOM 对象。如下列代码:

document.addEventListener(‘click’,function(e){
	console.log(this);
	setTimeout(function(){
		console.log(this);
	},200);
},false);

点击页面,依次输出:document 和 window 对象
解析:点击页面监听 click 事件属于方法调用,this 指向事件源 DOM 对象, 即 obj.fn.apply(obj),setTimeout 内的函数属于回调函数,可以这么理解:
f1.call(null,f2),所以 this 指向 window。

二、函数调用模式
就是普通函数的调用,此时的 this 被绑定到 window
1—最普通的函数调用
function fn1(){
console.log(this);//window
}
fn1();
2—函数嵌套
function fn1(){
function fn2(){
console.log(this);//window
}
fn2()
}
fn1();
3—把函数赋值以后再调用

三、构造器调用模式
call 方法第一个参数是要绑定给 this 的值,后面传入的是一个参数列表。当第一个参数为 null、undefined 的时候,默认指向 window。

  • bind 是返回对应函数,便于稍后调用,apply、call 是立即调用
  • call 的第二部分参数要一个一个传,apply 要把这些参数放到数组中(call将一个数组拍平,apply将一些数据合成一个数组)
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值