java过滤关键字(DFA算法)


转:https://my.oschina.net/magicalSam/blog/1528428 https://my.oschina.net/magicalSam/blog/1528524 项目中有使用过滤关键字的地方,在此自己记录一下. 无需其他java包,main方法直接执行,项目中具体使用的话,一般项目启动就加载关键字的文件,然后使用静态map存储,使用直接调用即可.
分两种方法,第一种是推荐使用的,第二种是ik分词器分词匹配,不推荐,因为效率不高,匹配度不高.


1:DFA算法(推荐)

package com.itcorey;

import com.google.common.io.Files;
import org.springframework.core.io.ClassPathResource;

import java.io.IOException;
import java.nio.charset.Charset;
import java.util.*;

/**
 * 敏感词处理工具 - DFA算法实现
 *
 * @author sam
 * @since 2017/9/4
 */
public class SensitiveWordUtil {

    /**
     * 敏感词匹配规则
     */
    public static final int MinMatchTYpe = 1;      //最小匹配规则,如:敏感词库["中国","中国人"],语句:"我是中国人",匹配结果:我是[中国]人
    public static final int MaxMatchType = 2;      //最大匹配规则,如:敏感词库["中国","中国人"],语句:"我是中国人",匹配结果:我是[中国人]

    /**
     * 敏感词集合
     */
    public static HashMap sensitiveWordMap;

    /**
     * 初始化敏感词库,构建DFA算法模型
     *
     * @param sensitiveWordSet 敏感词库
     */
    public static synchronized void init(Set<String> sensitiveWordSet) {
        initSensitiveWordMap(sensitiveWordSet);
    }

    /**
     * 初始化敏感词库,构建DFA算法模型
     *
     * @param sensitiveWordSet 敏感词库
     */
    private static void initSensitiveWordMap(Set<String> sensitiveWordSet) {
        //初始化敏感词容器,减少扩容操作
        sensitiveWordMap = new HashMap(sensitiveWordSet.size());
        String key;
        Map nowMap;
        Map<String, String> newWorMap;
        //迭代sensitiveWordSet
        Iterator<String> iterator = sensitiveWordSet.iterator();
        while (iterator.hasNext()) {
            //关键字
            key = iterator.next();
            nowMap = sensitiveWordMap;
            for (int i = 0; i < key.length(); i++) {
                //转换成char型
                char keyChar = key.charAt(i);
                //库中获取关键字
                Object wordMap = nowMap.get(keyChar);
                //如果存在该key,直接赋值,用于下一个循环获取
                if (wordMap != null) {
                    nowMap = (Map) wordMap;
                } else {
                    //不存在则,则构建一个map,同时将isEnd设置为0,因为他不是最后一个
                    newWorMap = new HashMap<>();
                    //不是最后一个
                    newWorMap.put("isEnd", "0");
                    nowMap.put(keyChar, newWorMap);
                    nowMap = newWorMap;
                }

                if (i == key.length() - 1) {
                    //最后一个
                    nowMap.put("isEnd", "1");
                }
            }
        }
    }

    /**
     * 判断文字是否包含敏感字符
     *
     * @param txt       文字
     * @param matchType 匹配规则 1:最小匹配规则,2:最大匹配规则
     * @return 若包含返回true,否则返回false
     */
    public static boolean contains(String txt, int matchType) {
        boolean flag = false;
        for (int i = 0; i < txt.length(); i++) {
            int matchFlag = checkSensitiveWord(txt, i, matchType); //判断是否包含敏感字符
            if (matchFlag > 0) {    //大于0存在,返回true
                flag = true;
            }
        }
        return flag;
    }

    /**
     * 判断文字是否包含敏感字符
     *
     * @param txt 文字
     * @return 若包含返回true,否则返回false
     */
    public static boolean contains(String txt) {
        return contains(txt, MaxMatchType);
    }

    /**
     * 获取文字中的敏感词
     *
     * @param txt       文字
     * @param matchType 匹配规则 1:最小匹配规则,2:最大匹配规则
     * @return
     */
    public static Set<String> getSensitiveWord(String txt, int matchType) {
        Set<String> sensitiveWordList = new HashSet<>();

        for (int i = 0; i < txt.length(); i++) {
            //判断是否包含敏感字符
            int length = checkSensitiveWord(txt, i, matchType);
            if (length > 0) {//存在,加入list中
                sensitiveWordList.add(txt.substring(i, i + length));
                i = i + length - 1;//减1的原因,是因为for会自增
            }
        }

        return sensitiveWordList;
    }

    /**
     * 获取文字中的敏感词
     *
     * @param txt 文字
     * @return
     */
    public static Set<String> getSensitiveWord(String txt) {
        return getSensitiveWord(txt, MaxMatchType);
    }

    /**
     * 替换敏感字字符
     *
     * @param txt         文本
     * @param replaceChar 替换的字符,匹配的敏感词以字符逐个替换,如 语句:我爱中国人 敏感词:中国人,替换字符:*, 替换结果:我爱***
     * @param matchType   敏感词匹配规则
     * @return
     */
    public static String replaceSensitiveWord(String txt, char replaceChar, int matchType) {
        String resultTxt = txt;
        //获取所有的敏感词
        Set<String> set = getSensitiveWord(txt, matchType);
        Iterator<String> iterator = set.iterator();
        String word;
        String replaceString;
        while (iterator.hasNext()) {
            word = iterator.next();
            replaceString = getReplaceChars(replaceChar, word.length());
            resultTxt = resultTxt.replaceAll(word, replaceString);
        }

        return resultTxt;
    }

    /**
     * 替换敏感字字符
     *
     * @param txt         文本
     * @param replaceChar 替换的字符,匹配的敏感词以字符逐个替换,如 语句:我爱中国人 敏感词:中国人,替换字符:*, 替换结果:我爱***
     * @return
     */
    public static String replaceSensitiveWord(String txt, char replaceChar) {
        return replaceSensitiveWord(txt, replaceChar, MaxMatchType);
    }

    /**
     * 替换敏感字字符
     *
     * @param txt        文本
     * @param replaceStr 替换的字符串,匹配的敏感词以字符逐个替换,如 语句:我爱中国人 敏感词:中国人,替换字符串:[屏蔽],替换结果:我爱[屏蔽]
     * @param matchType  敏感词匹配规则
     * @return
     */
    public static String replaceSensitiveWord(String txt, String replaceStr, int matchType) {
        String resultTxt = txt;
        //获取所有的敏感词
        Set<String> set = getSensitiveWord(txt, matchType);
        Iterator<String> iterator = set.iterator();
        String word;
        while (iterator.hasNext()) {
            word = iterator.next();
            resultTxt = resultTxt.replaceAll(word, replaceStr);
        }

        return resultTxt;
    }

    /**
     * 替换敏感字字符
     *
     * @param txt        文本
     * @param replaceStr 替换的字符串,匹配的敏感词以字符逐个替换,如 语句:我爱中国人 敏感词:中国人,替换字符串:[屏蔽],替换结果:我爱[屏蔽]
     * @return
     */
    public static String replaceSensitiveWord(String txt, String replaceStr) {
        return replaceSensitiveWord(txt, replaceStr, MaxMatchType);
    }

    /**
     * 获取替换字符串
     *
     * @param replaceChar
     * @param length
     * @return
     */
    private static String getReplaceChars(char replaceChar, int length) {
        String resultReplace = String.valueOf(replaceChar);
        for (int i = 1; i < length; i++) {
            resultReplace += replaceChar;
        }

        return resultReplace;
    }

    /**
     * 检查文字中是否包含敏感字符,检查规则如下:<br>
     *
     * @param txt
     * @param beginIndex
     * @param matchType
     * @return 如果存在,则返回敏感词字符的长度,不存在返回0
     */
    private static int checkSensitiveWord(String txt, int beginIndex, int matchType) {
        //敏感词结束标识位:用于敏感词只有1位的情况
        boolean flag = false;
        //匹配标识数默认为0
        int matchFlag = 0;
        char word;
        Map nowMap = sensitiveWordMap;
        for (int i = beginIndex; i < txt.length(); i++) {
            word = txt.charAt(i);
            //获取指定key
            nowMap = (Map) nowMap.get(word);
            if (nowMap != null) {//存在,则判断是否为最后一个
                //找到相应key,匹配标识+1
                matchFlag++;
                //如果为最后一个匹配规则,结束循环,返回匹配标识数
                if ("1".equals(nowMap.get("isEnd"))) {
                    //结束标志位为true
                    flag = true;
                    //最小规则,直接返回,最大规则还需继续查找
                    if (MinMatchTYpe == matchType) {
                        break;
                    }
                }
            } else {//不存在,直接返回
                break;
            }
        }
        if (matchFlag < 2 || !flag) {//长度必须大于等于1,为词
            matchFlag = 0;
        }
        return matchFlag;
    }

    public static void getRank(String s) throws IOException {

        ClassPathResource classPathResource = new ClassPathResource("短信模板审核关键词.txt");
        List<String> list = Files.readLines(classPathResource.getFile(), Charset.forName("gbk"));

        //初始化敏感词库
        SensitiveWordUtil.init(new HashSet<String>(list));

        System.out.println("敏感词的数量:" + SensitiveWordUtil.sensitiveWordMap.size());


    }


    public static void main(String[] args) throws IOException {

        //这是我自己项目中使用
//        ClassPathResource classPathResource = new ClassPathResource("关键词.txt");
//        List<String> list = Files.readLines(classPathResource.getFile(), Charset.forName("gbk"));
        List<String> list = Arrays.asList("关键字","加薇新");


        //初始化敏感词库
        SensitiveWordUtil.init(new HashSet<String>(list));

        System.out.println("敏感词的数量:" + SensitiveWordUtil.sensitiveWordMap.size());
        String string = "太多的伤感情怀也许只局限于饲养基地 荧幕中的情节。"
                + "然后网报【圣诞红包】网审平台我们的扮演加薇新跟随着主人公的喜红客联盟 怒哀乐而过于牵强的把自己的情感也附加于银幕情节中,然后感动就流泪,"
                + "难过就躺在某一个人的怀关键字里尽情的阐述心扉或者网报网审平台手机店主V信一个贱人一杯红酒一部电影在夜 深人静的晚上,关上电话静静的发呆着。";
        System.out.println("待检测语句字数:" + string.length());

        //是否含有关键字
        boolean result = SensitiveWordUtil.contains(string);
        System.out.println(result);
        result = SensitiveWordUtil.contains(string, SensitiveWordUtil.MinMatchTYpe);
        System.out.println(result);

        //获取语句中的敏感词
        Set<String> set = SensitiveWordUtil.getSensitiveWord(string);
        System.out.println("语句中包含敏感词的个数为:" + set.size() + "。包含:" + set);
        set = SensitiveWordUtil.getSensitiveWord(string, SensitiveWordUtil.MinMatchTYpe);
        System.out.println("语句中包含敏感词的个数为:" + set.size() + "。包含:" + set);

        //替换语句中的敏感词
        String filterStr = SensitiveWordUtil.replaceSensitiveWord(string, '*');
        System.out.println(filterStr);
        filterStr = SensitiveWordUtil.replaceSensitiveWord(string, '*', SensitiveWordUtil.MinMatchTYpe);
        System.out.println(filterStr);

        String filterStr2 = SensitiveWordUtil.replaceSensitiveWord(string, "[*敏感词*]");
        System.out.println(filterStr2);
        filterStr2 = SensitiveWordUtil.replaceSensitiveWord(string, "[*敏感词*]", SensitiveWordUtil.MinMatchTYpe);
        System.out.println(filterStr2);
    }

}

2:

使用ik分词器分词:需要引入pom文件:一个ik分词器的,一个google的guava

        <!-- https://mvnrepository.com/artifact/com.janeluo/ikanalyzer -->
        <dependency>
            <groupId>com.janeluo</groupId>
            <artifactId>ikanalyzer</artifactId>
            <version>2012_u6</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>27.0.1-jre</version>
        </dependency>

package com.itcorey;

import com.google.common.io.Files;
import org.springframework.core.io.ClassPathResource;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

import java.io.File;
import java.io.IOException;
import java.io.StringReader;
import java.nio.charset.Charset;
import java.util.*;

/**
 * 敏感词处理工具 - IKAnalyzer中文分词工具 - 借助分词进行敏感词过滤
 *
 * @author sam
 * @since 2017/9/4
 */
public class SensitiveWordUtil2 {

    /**
     * 敏感词集合
     */
    public static HashMap sensitiveWordMap;

    /**
     * 初始化敏感词库
     *
     * @param sensitiveWordSet 敏感词库
     */
    public static synchronized void init(Set<String> sensitiveWordSet) {
        //初始化敏感词容器,减少扩容操作
        sensitiveWordMap = new HashMap(sensitiveWordSet.size());
        for (String sensitiveWord : sensitiveWordSet) {
            sensitiveWordMap.put(sensitiveWord, sensitiveWord);
        }
    }

    /**
     * 判断文字是否包含敏感字符
     *
     * @param txt 文字
     * @return 若包含返回true,否则返回false
     */
    public static boolean contains(String txt) throws Exception {
        boolean flag = false;
        List<String> wordList = segment(txt);
        for (String word : wordList) {
            if (sensitiveWordMap.get(word) != null) {
                return true;
            }
        }
        return flag;
    }

    /**
     * 获取文字中的敏感词
     *
     * @param txt 文字
     * @return
     */
    public static Set<String> getSensitiveWord(String txt) throws IOException {
        Set<String> sensitiveWordList = new HashSet<>();

        List<String> wordList = segment(txt);
        for (String word : wordList) {
            if (sensitiveWordMap.get(word) != null) {
                sensitiveWordList.add(word);
            }
        }
        return sensitiveWordList;
    }

    /**
     * 替换敏感字字符
     *
     * @param txt         文本
     * @param replaceChar 替换的字符,匹配的敏感词以字符逐个替换,如 语句:我爱中国人 敏感词:中国人,替换字符:*, 替换结果:我爱***
     * @return
     */
    public static String replaceSensitiveWord(String txt, char replaceChar) throws IOException {
        String resultTxt = txt;
        //获取所有的敏感词
        Set<String> sensitiveWordList = getSensitiveWord(txt);
        String replaceString;
        for (String sensitiveWord : sensitiveWordList) {
            replaceString = getReplaceChars(replaceChar, sensitiveWord.length());
            resultTxt = resultTxt.replaceAll(sensitiveWord, replaceString);
        }
        return resultTxt;
    }

    /**
     * 替换敏感字字符
     *
     * @param txt        文本
     * @param replaceStr 替换的字符串,匹配的敏感词以字符逐个替换,如 语句:我爱中国人 敏感词:中国人,替换字符串:[屏蔽],替换结果:我爱[屏蔽]
     * @return
     */
    public static String replaceSensitiveWord(String txt, String replaceStr) throws IOException {
        String resultTxt = txt;
        //获取所有的敏感词
        Set<String> sensitiveWordList = getSensitiveWord(txt);
        for (String sensitiveWord : sensitiveWordList) {
            resultTxt = resultTxt.replaceAll(sensitiveWord, replaceStr);
        }
        return resultTxt;
    }

    /**
     * 获取替换字符串
     *
     * @param replaceChar
     * @param length
     * @return
     */
    private static String getReplaceChars(char replaceChar, int length) {
        String resultReplace = String.valueOf(replaceChar);
        for (int i = 1; i < length; i++) {
            resultReplace += replaceChar;
        }

        return resultReplace;
    }

    /**
     * 对语句进行分词
     *
     * @param text 语句
     * @return 分词后的集合
     * @throws IOException
     */
    private static List segment(String text) throws IOException {
        List<String> list = new ArrayList<>();
        StringReader re = new StringReader(text);
        IKSegmenter ik = new IKSegmenter(re, true);
        Lexeme lex;
        while ((lex = ik.next()) != null) {
            list.add(lex.getLexemeText());
        }
        return list;
    }

    public static void main(String[] args) throws IOException {

        ClassPathResource classPathResource = new ClassPathResource("短信模板审核关键词.txt");
        List<String> list = Files.readLines(classPathResource.getFile(), Charset.forName("gbk"));

        //初始化敏感词库
        SensitiveWordUtil2.init(new HashSet<String>(list));

        /**
         * 需要进行处理的目标字符串
         */
        System.out.println("敏感词的数量:" + SensitiveWordUtil2.sensitiveWordMap.size());
        String string = "太多的伤感情怀也许只局限于饲养基地 荧幕中的情节。"
                + "然后 我们加薇芯号色就是跟随着主人公的喜红客联盟 怒哀乐而过于牵强的把自己的情感也附加于银幕情节中,然后感动就流泪,"
                + "难过就躺在某一个人的怀里尽情的拉你进群者手机卡复制器一个贱人一杯红酒一部电影在夜 深人静的晚上,关上电话静静的发呆着。";
        System.out.println("待检测语句字数:" + string.length());

        /**
         * 是否含有关键字
         */
        try {
            boolean result = SensitiveWordUtil2.contains(string);
            System.out.println(result);
        } catch (Exception e) {
            e.printStackTrace();
        }

        /**
         * 获取语句中的敏感词
         */
        Set<String> set = SensitiveWordUtil2.getSensitiveWord(string);
        System.out.println("语句中包含敏感词的个数为:" + set.size() + "。包含:" + set);

        /**
         * 替换语句中的敏感词
         */
        String filterStr = SensitiveWordUtil2.replaceSensitiveWord(string, '*');
        System.out.println(filterStr);

        String filterStr2 = SensitiveWordUtil2.replaceSensitiveWord(string, "[*敏感词*]");
        System.out.println(filterStr2);
    }

}
### 敏感词过滤算法实现与原理 敏感词过滤是一种重要的文本处理技术,广泛应用于互联网平台的内容安全领域。以下是几种常见敏感词过滤算法的实现方式及其工作原理。 #### 1. **基于C#的敏感词过滤** 在C#中可以采用多种方法来实现敏感词过滤功能。其中一种较为高效的方式是利用DFA(Deterministic Finite Automaton)算法[^3]。该算法的核心思想在于构建一个有限状态机,在初始化阶段将所有的敏感词构建成一张字典树结构。当输入一段待检测文本时,只需按照字符逐一匹配即可完成快速查找。 下面是一个简单的C#代码示例展示如何使用DFA进行敏感词过滤: ```csharp using System; using System.Collections.Generic; public class SensitiveWordFilter { private Dictionary<char, Dictionary<string, bool>> trie = new(); public void AddSensitiveWord(string word){ var node = this.trie; foreach(var c in word){ if(!node.ContainsKey(c)){ node[c] = new(); } node = node[c]; } node["isEnd"] = true; } public List<string> FindAllMatches(string text){ var result = new List<string>(); int i = 0; while(i < text.Length){ var tempNode = this.trie; int j = i; string match = ""; while(j < text.Length && tempNode.ContainsKey(text[j])){ match += text[j]; tempNode = tempNode[text[j]]; if(tempNode.ContainsKey("isEnd") && (bool)tempNode["isEnd"]){ result.Add(match); break; } j++; } i++; } return result; } } ``` 此代码片段展示了如何创建并填充一个Trie数据结构以及如何遍历给定字符串以找到所有可能存在的敏感词。 --- #### 2. **基于JavaDFA敏感词过滤** 对于Java开发者来说,同样可以选择DFA作为主要解决方案之一。Houbb团队开源了一个名为`houbb-sensitivewords`的项目,该项目提供了完整的DFA敏感词过滤器实现[^2]。它不仅支持高效的模式匹配还具备良好的扩展性和维护性。 其基本流程如下: - 初始化过程中加载全部敏感词汇表,并将其转化为前缀树形式存储; - 对于每一条新来的消息串执行逐一遍历操作直至发现违规项或者结束整个过程为止; 具体可参阅官方文档获取更详尽说明。 --- #### 3. **JavaScript中的敏感词过滤** 除了服务器端语言外,前端也可以独立完成部分轻量级的任务比如即时聊天框内的实时监控等场景下应用到此类机制。虽然性能上相较于编译型语言稍逊一筹但仍能满足一定需求范围内的业务诉求[^4]。 这里给出了一段对比两种不同策略效率差异的例子——分别采用了朴素的方法(indexOf())和优化后的dfa版本来进行相同规模的数据集上的实验验证最终得出结论后者明显优于前者尤其是在面对海量关键字列表的情况下表现尤为突出: ```javascript // Naive approach using indexOf() const sensitiveWords = ["bad", "ugly"]; let ss = "This is a bad example with ugly words."; sensitiveWords.forEach((word) => { if (ss.indexOf(word) !== -1) { console.log(`Found ${word}`); } }); // Optimized version leveraging DFA algorithm... function buildMachine(patterns){ let states={}; patterns.forEach(p=>{ let currentState=states; for(let char of p){ if(!(char in currentState))currentState[char]={}; currentState=currentState[char]; } currentState['$']=true;//mark end state }); return states; } var machine = buildMachine(sensitiveWords); function runMachine(machine,text){ const results=[]; outer:for(let pos=0;pos<text.length;pos++){ let current=machine,statePath=[pos],matched=''; inner:while(current!==undefined&&current!==''){ matched+=text[pos++]; if('$' in current){results.push({start:statePath.shift(),end:pos-length});continue outer;} current=current[text[pos]];if(!current){break inner;} } } return results; } console.time('DFA'); runMachine(machine,"This is another bad and ugly test."); console.timeEnd('DFA'); ``` 上述脚本先定义好两组不同的函数用来构造状态转移图谱然后再调用它们去分析目标语句是否存在违禁成分最后打印耗时时长以便直观感受两者差距大小. --- ### 总结 无论是选用何种编程环境还是具体的实现细节有所区别,但核心理念始终围绕着提高检索速度降低资源消耗展开讨论。通过合理运用诸如AC自动机、BMK算法甚至是更加复杂的机器学习模型都可以进一步提升系统的智能化水平从而更好地服务于实际应用场景之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值