推荐系统之NeuralCF模型

NeuralCF模型通过多层神经网络改进矩阵分解,解决特征交叉问题,增强推荐系统的预测能力。该模型引入非线性关系,替换简单的内积运算,提升特征融合效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

今天开始整理讲解NeuralCF模型,这个模型相比较AutoRec和DeepCrossing添加了更多特征交叉的想法,前面讲解的AutoRec和Deep Crossing模型是在神经网络的复杂度和层数方面进行的进化,而这两个模型也是使用深度学习从用户和物品相似度的角度来进行系统推荐的, 但是这两个模型在特征交叉这个方面并没有进行很合理的设计,更多的是使用了全连接层来增加了模型的复杂度和使得所有特征进行了一个统一的交叉。这样存在着很大的问题,即两个毫不相关的特征也较交叉在了一起,这就使得对模型权重有所影响。所以为了更好地使两两特征更好的交叉,于是新加披国立大学在2017年提出了基于深度学习的协同过滤模型NeuralCF。其中对AutoRec和DeepCrossing这两个模型有些遗忘的小伙伴可以看看我这篇文章。推荐算法之AutoRec与Deep Crossing模型

一、关于MF的小知识

NeuralCF这个模型是基于矩阵分解进化而来的,它更多的是解决了矩阵分解中对特征进行简单交叉的方式,用深度学习来进行更深度的特征融合,对矩阵分解也有所遗忘的朋友可以看看我这篇文章--推荐算法之矩阵分解,在这里我就不多做回顾了。在这里多说一句总结的话,对于矩阵分解来说其实就是类似于一个简单的神经网络,其中的隐向量Q和P也就是用户和物品向量的em

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值