NMS及IOU原理讲解和代码解析

非极大值抑制(NMS)在计算机视觉任务如人脸检测中用于去除冗余框,通过迭代过程选择得分最高且不重叠的框。IOU(Intersection Over Union)衡量预测框与真实框的重合度,是评估目标检测性能的关键指标。本文介绍了NMS的基本步骤和IOU的计算公式,并提供了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NMS

NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测、目标检测等。这里主要以人脸检测中的应用为例,来说明NMS。

以下图为例,由于滑动窗口,同一个人可能有好几个框(每一个框都带有一个分类器得分)。而我们的目标是一个人只保留一个最优的框:于是我们就要用到非极大值抑制,来抑制那些冗余的框: 抑制的过程是一个迭代-遍历-消除的过程。主要分为以下三步:

(1)将所有框的得分排序,选中最高分及其对应的框:

这里写图片描述

(2)遍历其余所有的框,如果和当前最高分框的重叠面积(IOU)大于一定阈值,我们就将框删除。

这里写图片描述

(3)从未处理的框中继续选一个得分最高的,重复上述过程。

这里写图片描述<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值