转自 https://github.com/yoghurtjia/-python-BAT-/blob/master/most_common_ip.py
海量日志数据,提取出某日访问次数最多的那个IP
解决思路:因为问题中提到了是海量数据,所以我们想把所有的日志数据读入内存,再去排序,找到出现次数最多的,显然行不通了。这里我们假设内存足够,我们可以仅仅只用几行代码,就可以求出最终的结果
代码如下:
#python2.7
from collections import Counter
if __name__ == '__main__':
ip_list = read_log() #读取日志到列表中,这里为了简化,我们用一个小的列表来代替。
ip_list = ["192.168.1.2","192.168.1.3","192.168.1.3","192.168.1.4","192.168.1.2"]
ip_counter = Counter(ip_list) #使用python内置的列表元素计数函数,进行统计
# print ip_counter.most_common() Out:[('192.168.1.3', 2), ('192.168.1.2', 2), ('192.168.1.4', 1)]
print ip_counter.most_common()[0][0] #out:192.168.1.3
在内存足够的情况下,我们可以看到仅仅使用了5、6行代码就解决了这个问题
下面才是我们的重点,假如内存有限,不足以装得下所有的日志数据,应该怎么办?
既然内存都不能装得下所有数据,那么我们后面的使用排序算法都将无从谈起,这里我们采取大而化小的做法。
假设海量的数据的大小是100G,我们的可用内存是1G.我们可以把数据分成1000份(这里只要大于100都是可以的),每次内存读入100M再去处理。但是问题的关键是怎么将这100G数据分成1000分呢。这里我们以前学过的hash函数就派上用场了。
Hash函数的定义:对于输入的字符串,返回一个固定长度的整数,hash函数的巧妙之处在于对于相同的字符串,那么经过hash计算,得出来的结果肯定是相同的,不同的值,经过hash,结果可能相同(这种可能性一般都很小)或者不同。那么有了hash函数,
那么这道题就豁然开朗了,思路如下:
1.对于海量数据中的每一个ip,使用hash函数计算hash(ip)%1000,输出到1000个文件中
2.对于这1000个文件,分别找出出现最多的ip。这里就可以用上面提到的Counter类的most_common()方法了(这里方法很多,不一一列举)
3.使用外部排序,对找出来的1000个ip在进行排序。(这里数据量小,神马排序方法都行,影响不大)
代码如下:
import os
import heapq
import operator
from collections import Counter
source_file = 'C:/Users/Administrator/Desktop/most_ip/bigdata.txt' #原始的海量数据ip
temp_files = 'C:/Users/Administrator/Desktop/most_ip/temp/' #把经过hash映射过后的数据存到相应的文件中
top_1000ip = [] #存放1000个文件的出现频率最高的ip和出现的次数
def hash_file():
"""
this function is map a query to a new file
"""
temp_path_list = []
if not os.path.exists(temp_files):
os.makedirs(temp_files)
for i in range(0,1000):
temp_path_list.append(open(temp_files+str(i)+'.txt',mode='w'))
with open(source_file) as f:
for line in f:
temp_path_list[hash(str(line))%1000].write(line)
#print hash(line)%1000
print line
for i in range(1000):
temp_path_list[i].close() # python的close()关闭的是open对象
def cal_query_frequency():
for root,dirs,files in os.walk(temp_files):
for file in files:
real_path = os.path.join(root,file)
ip_list = []
with open(real_path) as f:
for line in f:
ip_list.append(line.replace('\n',''))
try:
top_1000ip.append(Counter(ip_list).most_common()[0])
except:
pass
print top_1000ip
def get_ip():
return (sorted(top_1000ip,key = lambda a:a[1],reverse=True)[0])[0]
if __name__ == '__main__':
hash_file()
cal_query_frequency()
print(get_ip())