可测函数的基本性质

定理1: f ( x ) , g ( x ) f(x),g(x) f(x),g(x) E E E上的可测函数,则 c f ( x ) ( c ∈ R ) cf(x)(c\in \mathbb{R}) cf(x)(cR) f ( x ) g ( x ) f(x)g(x) f(x)g(x) E E E上的可测函数; f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x) f ( x ) / g ( x ) f(x)/g(x) f(x)/g(x)是其有定义的集合上的可测函数。

推论1: E ⊂ R n E \sub \mathbb{R}^n ERn是可测集,则 E E E上连续函数均为可测函数,即 C ( E ) ⊂ M ( E ) C(E)\sub \mathcal{M}(E) C(E)M(E)

定理2: { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E ⊂ R n E \sub \mathbb{R}^n ERn上的可测函数列,则下列函数:
(1) sup ⁡ k ≥ 1 { f k ( x ) } \sup\limits_{k \ge 1}\{f_k(x)\} k1sup{fk(x)}
(2) inf ⁡ k ≥ 1 { f k ( x ) } \inf\limits_{k \ge 1}\{f_k(x)\} k1inf{fk(x)}
(3) lim ⁡ ‾ k → ∞ f k ( x ) \overline{\lim\limits}_{k \rightarrow \infty}f_k(x) limkfk(x)
(4) lim ⁡ ‾ k → ∞ f k ( x ) \underline{\lim\limits}_{k \rightarrow \infty}f_k(x) limkfk(x)
都是 E E E上的可测函数。

推论2: { f k ( x ) } \{f_k(x)\} {fk(x)}是可测函数 E E E上的可测函数列,且有 lim ⁡ k → ∞ f k ( x ) = f ( x ) \lim\limits_{k \rightarrow \infty}f_k(x)=f(x) klimfk(x)=f(x) f ( x ) f(x) f(x) E E E上的可测函数。

定理3: E ⊂ R n E \sub \mathbb{R}^n ERn是可测集,则 E E E上实值函数 f ( x ) f(x) f(x)是可测的充分必要条件是, f + ( x ) , f − ( x ) f^{+}(x),f^{-}(x) f+(x),f(x)都是 E E E上可测函数,当 f ( x ) f(x) f(x) E E E上可测时, ∣ f ( x ) ∣ |f(x)| f(x)在集合 E E E上也是可测的。

定理4: f ( x ) f(x) f(x) R \mathbb{R} R上连续函数, g ( x ) g(x) g(x) R n \mathbb{R}^{n} Rn中可测集 E E E上的可测函数,则复合函数 h ( x ) = f ( g ( x ) ) h(x)=f(g(x)) h(x)=f(g(x)) E E E上的可测函数。

定理5: E ⊂ R n E \sub \mathbb{R}^n ERn是可测集, f ( x ) f(x) f(x) g ( x ) g(x) g(x) E E E上两个函数。如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x) E E E上几乎处处相等,即存在一个集合 E 0 ⊂ E E_0 \sub E E0E,满足 m ( E 0 ) = 0 m(E_0)=0 m(E0)=0,使得函数 f f f g g g在集合 E \ E 0 E\backslash E_0 E\E0上处处相等,则当其中一个在 E E E上可测时,另一个在 E E E上也可测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值