定理1: 若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)是 E E E上的可测函数,则 c f ( x ) ( c ∈ R ) cf(x)(c\in \mathbb{R}) cf(x)(c∈R), f ( x ) g ( x ) f(x)g(x) f(x)g(x)是 E E E上的可测函数; f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x)与 f ( x ) / g ( x ) f(x)/g(x) f(x)/g(x)是其有定义的集合上的可测函数。
推论1: 设 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn是可测集,则 E E E上连续函数均为可测函数,即 C ( E ) ⊂ M ( E ) C(E)\sub \mathcal{M}(E) C(E)⊂M(E)。
定理2: 设 { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn上的可测函数列,则下列函数:
(1) sup k ≥ 1 { f k ( x ) } \sup\limits_{k \ge 1}\{f_k(x)\} k≥1sup{fk(x)};
(2) inf k ≥ 1 { f k ( x ) } \inf\limits_{k \ge 1}\{f_k(x)\} k≥1inf{fk(x)};
(3) lim ‾ k → ∞ f k ( x ) \overline{\lim\limits}_{k \rightarrow \infty}f_k(x) limk→∞fk(x);
(4) lim ‾ k → ∞ f k ( x ) \underline{\lim\limits}_{k \rightarrow \infty}f_k(x) limk→∞fk(x)
都是 E E E上的可测函数。
推论2: 设 { f k ( x ) } \{f_k(x)\} {fk(x)}是可测函数 E E E上的可测函数列,且有 lim k → ∞ f k ( x ) = f ( x ) \lim\limits_{k \rightarrow \infty}f_k(x)=f(x) k→∞limfk(x)=f(x)则 f ( x ) f(x) f(x)是 E E E上的可测函数。
定理3: 若 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn是可测集,则 E E E上实值函数 f ( x ) f(x) f(x)是可测的充分必要条件是, f + ( x ) , f − ( x ) f^{+}(x),f^{-}(x) f+(x),f−(x)都是 E E E上可测函数,当 f ( x ) f(x) f(x)在 E E E上可测时, ∣ f ( x ) ∣ |f(x)| ∣f(x)∣在集合 E E E上也是可测的。
定理4: 设 f ( x ) f(x) f(x)是 R \mathbb{R} R上连续函数, g ( x ) g(x) g(x)是 R n \mathbb{R}^{n} Rn中可测集 E E E上的可测函数,则复合函数 h ( x ) = f ( g ( x ) ) h(x)=f(g(x)) h(x)=f(g(x))是 E E E上的可测函数。
定理5: 设 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn是可测集, f ( x ) f(x) f(x), g ( x ) g(x) g(x)是 E E E上两个函数。如果 f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)在 E E E上几乎处处相等,即存在一个集合 E 0 ⊂ E E_0 \sub E E0⊂E,满足 m ( E 0 ) = 0 m(E_0)=0 m(E0)=0,使得函数 f f f与 g g g在集合 E \ E 0 E\backslash E_0 E\E0上处处相等,则当其中一个在 E E E上可测时,另一个在 E E E上也可测。