多元正态分布的定义及基本性质

引言

正态分布是19世纪德国科学家Gauss(1777—1855)在研究单个测量误差 ε \varepsilon ε的分布时导出一元正态分布 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2),而多元正态是由多个测量误差的联合分布导出的 N p ( μ , ε ) N_p(\mu,\varepsilon) Np(μ,ε)。多元正态分布在多元统计分析中所占的重要地位,如同一元统计分析中一元正态分布所占的重要地位一样,多元统计分析中的许多重要理论和方法都是直接或间接建立在正态分布的基础上,多元正态分布是多元统计分析的基础,同时它具有许多优良的性质。此外,在实用中遇到的随机向量常常是服从正态分布或近似正态分布。因此现实世界中许多实际问题的解决办法都是以总体服从正态分布或近似正态分布为前提的。

一元正态分布的定义

定义1: 一元正态分布的概率密度函数为: f ( x ) = 1 2 π σ exp ⁡ [ − 1 2 ( x − μ σ ) 2 ] − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2\pi \sigma}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] \quad -\infty<x < +\infty f(x)=2πσ 1exp[21(σxμ)2]<x<+

多元正态分布的定义

定义2: 多元正态分布是一元正态分布的推广,若 p p p维随机向量 X = ( X 1 , ⋯   , X p ) ⊤ X=(X_1,\cdots,X_p)^{\top} X=(X1,,Xp)的密度函数为 f ( x ) = 1 ( 2 π ) p ∣ Σ ∣ 1 2 exp ⁡ [ − 1 2 ( x − μ ) ⊤ Σ − 1 ( x − μ ) ] f(x)=\frac{1}{\sqrt{(2\pi)}^p|\Sigma|^{\frac{1}{2}}}\exp \left[-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right] f(x)=(2π) pΣ211exp[21(xμ)Σ1(xμ)]其中, x = ( x 1 , ⋯   , x p ) ⊤ x=(x_1,\cdots,x_p)^{\top} x=(x1,,xp) μ \mu μ是随机向量 X X X p p p维均值向量, Σ \Sigma Σ X X X p p p阶协方差阵(是正定阵以保证 Σ − 1 \Sigma^{-1} Σ1存在),则称 X X X服从 p p p元正态分布,也称 X X X p p p维正态随机向量,简记为 X ∼ N p ( μ , Σ ) X\sim N_p(\mu,\Sigma) XNp(μ,Σ),显然当 p = 1 p=1 p=1时,即为一元正态密度函数。

定义3: 独立标准正态变量 X 1 , ⋯   , X p X_1,\cdots,X_p X1,,Xp的有限线性组合: Y = [ Y 1 ⋮ Y m ] = A m × p [ X 1 ⋮ X p ] + μ m × 1 Y=\left[\begin{array}{c}Y_1\\ \vdots\\ Y_m\end{array}\right]=A_{m\times p} \left[\begin{array}{c}X_1\\ \vdots\\ X_p\end{array}\right]+\mu_{m\times 1} Y=Y1Ym=Am×pX1Xp+μm×1称为 m m m维正态随机向量,记为 Y ∼ N m ( μ , Σ ) Y \sim N_m(\mu,\Sigma) YNm(μ,Σ),其中 Σ = A A ⊤ \Sigma=AA^{\top} Σ=AA,这里需要注意的是 Σ = A A ⊤ \Sigma=AA^{\top} Σ=AA的分解一般不是唯一的。

定义4: X X X的特征函数为 Φ ( t ) = exp ⁡ ( i t ⊤ μ − 1 2 t ⊤ Σ t ) , \Phi(t)=\exp(i t^{\top}\mu-\frac{1}{2}t^{\top}\Sigma t), Φ(t)=exp(itμ21tΣt),其中 t t t为实向量,则称 X X X服从 p p p元正态分布,显然用特征函数定义,可以包括 ∣ Σ ∣ = 0 |\Sigma|=0 Σ=0情况。

多元正态变量的基本性质

  • X = ( X 1 , ⋯   , X p ) ⊤ ∼ N ( μ , Σ ) X=(X_1,\cdots,X_p)^{\top}\sim N(\mu,\Sigma) X=(X1,,Xp)N(μ,Σ) Σ \Sigma Σ是对角阵,则 X 1 , ⋯   , X p X_1,\cdots,X_p X1,,Xp相互独立。
  • 若总体 X = ( X 1 , ⋯   , X p ) ⊤ ∼ N ( μ , Σ ) X=(X_1,\cdots,X_p)^{\top}\sim N(\mu,\Sigma) X=(X1,,Xp)N(μ,Σ),则每个分量 X i ∼ N ( μ i , σ i i ) ( i = 1 , ⋯   , p ) X_i \sim N(\mu_i,\sigma_{ii})(i=1,\cdots,p) XiN(μi,σii)(i=1,,p) X X X中的任何部分集合构成的向量也服从正态分布,即多元正态随机向量 X X X的所有子集都服从正态分布。
  • 若总体 X = ( X 1 , ⋯   , X p ) ⊤ ∼ N p ( μ , Σ ) X=(X_1,\cdots,X_p)^{\top}\sim N_p(\mu,\Sigma) X=(X1,,Xp)Np(μ,Σ),则随机变量的任意线性组合: a ⊤ X = a 1 X 1 + a 2 X 2 + ⋯ + a p X p ∼ N ( a ⊤ μ , a ⊤ Σ a ) a^{\top}X=a_1X_1+a_2X_2+\cdots+a_pX_p \sim N(a^{\top}\mu,a^{\top}\Sigma a) aX=a1X1+a2X2++apXpN(aμ,aΣa)。反之,如果对任意向量 a a a a ⊤ X ∼ N ( a ⊤ μ , a ⊤ Σ a ) a^{\top}X\sim N(a^{\top}\mu,a^{\top}\Sigma a) aXN(aμ,aΣa),则 X ∼ N p ( μ , Σ ) X\sim N_p(\mu,\Sigma) XNp(μ,Σ)
  • X ∼ N p ( μ , Σ ) X \sim N_p(\mu,\Sigma) XNp(μ,Σ) A A A s × p s \times p s×p阶常数阵, d d d s s s维常数向量,则 A X + d ∼ N s ( A μ + d , A Σ A ⊤ ) AX+d\sim N_s(A\mu+d,A\Sigma A^{\top}) AX+dNs(Aμ+d,AΣA),即正态随机向量的线性函数还是正态的。
  • X ∼ N p ( μ , Σ ) X \sim N_p(\mu,\Sigma) XNp(μ,Σ),将 X , μ , Σ X,\mu,\Sigma X,μ,Σ作如下部分: X = ( X ( 1 ) X ( 2 ) ) p − q q μ = ( μ ( 1 ) μ ( 2 ) ) Σ = ( Σ 11 Σ 12 Σ 21 Σ 22 ) p − q q X=\left(\begin{array}{c}X^{(1)}\\X^{(2)}\end{array}\right)^q_{p-q}\quad \mu=\left(\begin{array}{c}\mu^{(1)}\\\mu^{(2)}\end{array}\right)\quad \Sigma=\left(\begin{array}{cc}\Sigma_{11}&\Sigma_{12}\\\Sigma_{21}&\Sigma_{22}\end{array}\right)^{q}_{p-q} X=(X(1)X(2))pqqμ=(μ(1)μ(2))Σ=(Σ11Σ21Σ12Σ22)pqq X ( 1 ) ∼ N q ( μ ( 1 ) , Σ 11 ) X^{(1)}\sim N_q(\mu^{(1)},\Sigma_{11}) X(1)Nq(μ(1),Σ11) X ( 2 ) ∼ N p − q ( μ ( 2 ) , Σ 22 ) X^{(2)}\sim N_{p-q}(\mu^{(2)},\Sigma_{22}) X(2)Npq(μ(2),Σ22)
  • X ∼ N p ( μ , Σ ) X \sim N_p(\mu,\Sigma) XNp(μ,Σ) ∣ Σ ∣ > 0 |\Sigma|>0 Σ>0,则 Σ − 1 ( x − μ ) ∼ χ 2 ( p ) \Sigma^{-1}(x-\mu)\sim \chi^2(p) Σ1(xμ)χ2(p)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值