pycharm安装pytorch

1、pycharm终端安装(一)
①按照file、setting、project、python interpreter找到解释器,如果有多个python版本,先选择想要的python版本(python2、python3);
②点+,安装pytorch包
在这里插入图片描述
在这里插入图片描述
测试是否安装成功
在这里插入图片描述
2、pycharm终端安装(二)
https://zhuanlan.zhihu.com/p/144544172

在pycharm的命令行里用pip安装:

pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

(这里的pytorch版本可能太老了~)

### 如何在 PyCharm安装 PyTorch #### 创建或选择 Python 解释器 为了确保项目能够访问所需的库,在开始之前需确认已设置好合适的Python解释器。这可以通过进入`File` -> `Settings` -> `Project` -> `Python Interpreter`完成,之后可以选择现有的虚拟环境或是创建一个新的虚拟环境[^2]。 #### 更新 pip 工具 有时旧版本的pip可能会引发兼容性问题,因此建议保持pip处于最新状态。可以在PyCharm内置终端里通过执行如下命令来升级pip工具: ```bash python -m pip install --upgrade pip ``` 此操作有助于避免后续可能出现的一些依赖关系冲突问题[^4]。 #### 安装 PyTorch 库 对于希望利用GPU加速计算的应用场景来说,推荐直接从官方渠道获取适合当前系统的安装指令。通常情况下,可以从PyTorch官方网站找到针对不同配置(如CUDA版本)优化过的安装指南。具体到PyCharm环境中,则可以直接复制对应的pip安装语句并粘贴至IDE自带的终端窗口内运行。例如,要安装支持特定版本CUDA驱动程序的PyTorch GPU版本,可参照以下形式的命令: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 这里假设使用的CUDA版本为11.3;实际应用时应根据个人情况调整URL中的参数以匹配本地硬件条件[^1]。 #### 验证安装结果 一旦上述过程顺利完成,可通过简单的测试脚本来验证PyTorch及其CUDA扩展是否正常工作。打开新的Python文件并向其中加入下面几行代码: ```python import torch print(f"CUDA Available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"Number of CUDA Devices: {torch.cuda.device_count()}") print(f"Current Device Name: {torch.cuda.get_device_name(0)}") else: print("No available CUDA device found.") ``` 这段小程序会尝试连接到任何可用的NVIDIA显卡设备,并打印有关这些设备的信息。如果一切正常的话,应该能看到类似于这样的输出:“CUDA Available: True”,表明已经成功启用了GPU支持功能[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值