01背包问题

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

class Solution {
    public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWight = 4;
        testWeightBagProblem(weight, value, bagWight);
    }

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int weightLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,从0-i物品随意拿取能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < weightLen; i++){
        /*
            j为背包容量,dp[j]为当前包中物品价值
            两种情况:不放当前物品,放当前物品

            i = 0时从下标0-0中取物品,计算背包最大价值
            此时的dp为[0,0,0,0,0],j >= 1
            dp[4] = max(dp[4],dp[4 - 1] + 20) = 15
            dp[3] = max(dp[3],dp[3 - 1] + 20) = 15
            dp[2] = max(dp[2],dp[2 - 1] + 20) = 15
            dp[1] = max(dp[1],dp[1 - 1] + 20) = 15

            i = 1时从0-1中取物品,计算背包最大价值
            此时的dp为[0,15,15,15,15],j >= 3
            dp[4] = max(dp[4],dp[4 - 3] + 20) = 35
            dp[3] = max(dp[3],dp[3 - 3] + 20) = 20

            i = 2时从0-2中取物品,计算背包最大价值
            此时的dp为[0,15,15,20,35],j >= 4
            dp[4] = max(dp[4],dp[4 - 4] + 30) = 35

            最终遍历结果
            [0,15,15,15,15]
         */
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++){
            System.out.print(dp[j] + " ");
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我顶得了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值