LLaMA3大模型概述 目前发布的是早期版本,包括 8B 和 70B 大小两个不同版本。目前发布的LLaMA 3仅支持文本输入和输出,今年晚些会发布405B(也称400B)和多模态版本。Llama 3 8B 在 MMLU、ARC、DROP 和 HumanEval 等 9 个基准测试中,优于具有相似参数数量的其他开源模型,例如 Mistral 的 Mistral 7B 和 Google 的 Gemma 7B。
向量数据库FAISS/Chromadb/ES/milvus简单概述 es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es。它是以插件方式存在的一个es服务,通过读取river中的数据并把它索引到es中,官方的river有couchDB的,RabbitMQ的,代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上。它支持数据的分区和分片存储,可以在需要时进行水平扩展,以满足不同规模的数据需求。
文本向量嵌入表示模型评估榜单参考 文本向量嵌入表示模型相关参考资料:C-MTEB:Chinese Massive Text Embedding Benchmark榜单。MTEB: Massive Text Embedding Benchmark榜单。MTEB: Massive Text Embedding Benchmark榜单。
检索增强生成RAG范式概述 RAG---Retrieval-Augmented Generation是一种结合了信息检索和生成式模型的方法,旨在提高生成式模型在问答、摘要等任务中的表现。它通过在生成式模型中引入一个信息检索模块,可以在生成文本的过程中动态地检索外部知识/知识库,从而提高生成文本的质量和相关性。这种结合信息检索和生成的方法可以有效地利用外部知识来辅助生成模型,使得生成的文本更加准确和丰富。
全球首个人形机器人“天工”问世 同时,“天工”采用了其独立自主研发的全新人形机器人运动技能学习方法——“基于状态记忆的预测型强化模仿学习”,实现了全球首例纯电驱全尺寸人形机器人的拟人奔跑。该方法既解决了强化学习带来的定位精度差的问题,又解决了模型预测控制方法当中对于非结构化环境适应性差的问题,达到更稳健、更拟人、更泛化的效果,可进一步推动规模化商业应用。发布会上,“天工”还为现场观众带来了一场精彩的“演出”,展示出“天工”对复杂环境更强的适应性,在行走及奔跑时更快速、更拟人,已实现6km/h的稳定奔跑。本文转自【央视新闻客户端】;
Llama3中文微调模型-Llama3-Chinese-8B-Instruct概述 Llama3的最大模型参数规模达到了惊人的400B。),8B模型和70B模型全系列都采用了GQA,GQA通过将查询分成不同的部分并给予它们不同的重点来理解查询的层次结构,这有助于系统更好地理解复杂问题并找到更相关的信息。通过LoRA微调,我们不仅保留了Llama3模型在预训练阶段获得的知识,还通过针对性的架构调整和参数优化,进一步提升了模型对中文语境的适应性和任务执行的准确性。这一过程中,我们特别注重了超参数的精细调整,并通过反复的模型评估与迭代,确保了微调后的模型能够在实际应用中稳定地提供高质量的输出。
GPT-4被超越,Anthropic发布Claude 3系列模型,全球最强大模型易主 Claude 3系列包括Claude 3 Haiku、Claude 3 Sonnet和Claude 3 Opus,能力逐级增强。Opus作为最先进模型,在多项评估标准上领先同行,展现出几乎与人类相媲美的理解和表达能力,是AGI领域的领跑者。Anthropic表示,Claude 3模型在企业应用和大规模部署方面还将提升,包括更高级的智能体功能和更智能、更快速、更安全的特性。Anthropic的Claude 3系列模型在AI领域引起了轰动,展示出强大的智能和性能,对行业发展具有重要意义。
python快速实现可使用不同颜色画笔的画布功能界面 Tkinter是Python的标准GUI(图形用户界面)工具包,它提供了创建GUI应用程序的功能。Tkinter是Python自带的库,因此无需额外安装即可使用。它基于Tk GUI工具包,是Python的标准GUI工具包之一。Tkinter提供了各种组件(如按钮、标签、文本框等)和布局管理器(如pack、grid、place)来构建用户界面。通过Tkinter,可以创建各种窗口、对话框、按钮、菜单等,以及处理用户输入和交互。鼠标点击可以选择8种不同颜色的画笔【初始默认为黑色】核心组件:tkinter库。
OpenAI文生视频大模型Sora概述 Sora的发布引发了关于虚假信息传播的争议。OpenAI将视频和图像表示为Patch,类似于GPT中的token,这种统一的数据表示方式使得Sora能够在更广泛的视觉数据上进行训练,涵盖不同的持续时间、分辨率和纵横比,有助于模型学习到更丰富的视觉特征,提高生成视频的质量和多样性。Sora是一种扩散模型,具备从噪声中生成完整视频的能力,它生成的视频一开始看起来像静态噪音,通过多个步骤逐渐去除噪声后,视频也从最初的随机像素转化为清晰的图像场景,其能够一次生成多帧预测,确保画面主体在暂时离开视野时仍保持一致。
第一拨靠文生视频大模型Sora赚钱的人已经出现,当心被“割韭菜” 记者看到,在名为“李一舟”的微信视频号上,售出课程共3.3万件,目前在售的“每个人的人工智能课”视频课程,售价199元,已售卖近600份。业内人士提醒,在人工智能的风口上,确实存在一些商家和个人,利用信息不对称和消费者的焦虑心理,推出低质量或虚假的产品,以牟取暴利。记者在售价9.9元、已售15份的“Sora实操手册,变现方式教程”商品详情处看到,手册、教程内容包括介绍Sora的功能、优势、演示案例以及变现方式,变现方式包括搞流量、卖账号、卖课程、卖提示词等。此外,还有售卖Sora的使用渠道和搞钱思路。
OpenAI2024王炸:文本生成视频大模型Sora引爆资本市场,概念股掀起热潮 但在不少社交平台和短视频平台上,一些个人和机构在尚未使用Sora的情况下就推出相关的付费课程,在这其中,李一舟成为国内AI课程领域的“明星”,推出的AI课程吸引了大量学员。而视频中动画和人物动作的逼真程度,被业内人士视作人工智能对于人类所处的物理世界理解程度的真实反映,而Sora除了在更长维度上的独特价值外,作为一种高效工具的它,也将会给诸多行业带来彻底的颠覆。在核心应用方面,Sora不仅可以通过文本生成视频,而且可以以静态图片生成视频,甚至连接两个完全不同主题和场景的视频,实现无缝过渡。
python快速实现图片的马赛克化 马赛克在古希腊和罗马时期广泛使用,用于装饰建筑物、浴室、庭院等。它由小块石材、玻璃、陶瓷或其他材料组成,通过粘合剂固定在表面上,形成各种图案和图像。马赛克在艺术和建筑领域一直被广泛使用,成为一种独特而美丽的装饰形式。马赛克图片是一种由小块像素组成的图像。它通过将原始图像分割成许多小方块或像素,并使用不同颜色或灰度值填充每个小方块来创建。这些小方块可以是正方形、长方形或其他形状,它们的颜色或灰度值根据原始图像的颜色或灰度值来确定。马赛克图片常用于保护隐私,对敏感信息进行模糊处理,或者用于艺术创作和装饰。
反物质(anti matter)和湮灭反应(Annihilation)浅读 反物质是正常物质的反状态。当正反物质相遇时,双方就会相互湮灭抵消,发生爆炸并产生巨大能量。正电子、负质子都是反粒子,它们跟通常所说的电子、质子相比较,电量相等但电性相反。科学家设想在宇宙中可能存在完全由反粒子构成的物质,也就是反物质。电子和反电子的质量相同,但有相反的电荷。质子与反质子也是这样。粒子与反粒子不仅电荷相反,其他一切可以相反的性质也都相反。质子与中子被统称为核子。人们从核现象的研究发现,质子能转化为中子,中子也能转化为质子,但在转化前后,系统的总核子数是不变的。例如:在发生β衰变时,放出正电子的
20个经典算法题目和python示例实现(算法编程练手) 20个经典算法题目和python示例实现(算法编程练手)---然而,两个相同种类的任务之间必须有长度为整数 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。题目:给定一组物品的重量和价值,以及一个背包的容量,找到能够装入背包的物品的最大总价值。题目:给定一个带权重的无向图,找到一个最小生成树,使得所有边的权重之和最小。
海鸥优化算法解决函数最小化问题的python示例实现 海鸥优化算法(Seagull Optimization Algorithm,简称SOA)是一种基于鸟类行为的启发式优化算法,灵感来源于海鸥在觅食过程中的行为策略。海鸥优化算法的基本思想是将待优化问题中的解空间看作是一个海域,将候选解看作是海鸥。合作搜索:根据适应度值,选择一部分优秀的海鸥作为领导者,其他海鸥围绕领导者进行搜索。通过合作和竞争的方式,能够有效地搜索解空间,具有较好的全局搜索能力。竞争搜索:在领导者的引领下,海鸥之间进行竞争搜索,以寻找更好的解。更新位置:根据搜索结果更新海鸥的位置。
樽海鞘优化算法寻找函数最小值问题的python示例实现 在算法的每一代中,樽海鞘个体根据其适应度值和周围个体的信息来调整自己的位置。每个樽海鞘个体都有自己的位置和适应度值,代表了其在问题空间中的解和解的质量。算法通过模拟樽海鞘的觅食和逃避行为来更新个体的位置,以期望找到更优的解。它模拟了樽海鞘在寻找食物和逃避危险时的行为策略,通过优化问题的搜索过程来寻找最优解。函数来执行樽海鞘优化算法,在每次迭代中,计算个体的适应度值,并找到最佳个体,然后更新所有个体的位置,并重复这个过程直到达到最大迭代次数,最后输出找到的最优解和最优适应度值。函数来更新个体的位置,其中。
灰狼优化算法解决函数优化问题的python示例实现 在灰狼优化算法中,将灰狼群体分为alpha、beta、delta三个等级,分别代表群体中最优解、次优解和次次优解。每个灰狼根据自己的位置和其他灰狼的位置来更新自己的位置,以期望找到更优的解。群体结构:在灰狼算法中,灰狼群体分为alpha、beta、delta三个等级,分别代表群体中最优解、次优解和次次优解。根据 alpha、beta、delta 的位置和其他灰狼的位置,更新灰狼的位置。根据灰狼的适应度,确定 alpha、beta、delta 三个灰狼的位置。初始化灰狼群体的位置和适应度。
人工蜂群算法解决Rastrigin函数全局最小值问题的python示例实现 ABC算法的主要函数,包括初始化蜜蜂群、计算适应度函数、更新蜜源和选择蜜蜂等操作,其中,dimension表示变量的维度,max_iter表示最大迭代次数,num_bees表示蜜蜂数量,limit表示变量的取值范围,func表示适应度函数。ABC算法的基本思想是将搜索空间中的每个解看作一个蜜源,蜜蜂在搜索过程中分为三种角色:工蜂、侦查蜂和观察蜂。工蜂在蜜源周围搜索,发现更好的蜜源后将信息传递给其他工蜂,侦查蜂则在搜索空间中随机选择蜜源进行探索,观察蜂则负责更新蜜源的信息。
狼群算法解决旅行商问题的python示例实现 它的优势在于能够同时进行全局搜索和局部搜索,通过合作和竞争的机制,能够有效地避免陷入局部最优解。狼群算法的基本思想是将问题空间看作是一个潜在的食物源,狼群的目标是找到这个食物源。狼群中的每个个体代表一个解,而狼群中的每个狼则代表一个搜索代理。首先定义城市坐标,然后计算城市之间的距离矩阵,然后使用狼群算法进行迭代搜索,更新狼群的位置,最后找到最优解并输出最优路径和最短距离。在狼群算法中,狼群的行为受到领导者和追随者的影响。它模拟了狼群中的领导者和追随者的行为,通过合作和竞争来搜索最优解。