RoBERTa极简简介

RoBERTa模型是在BERT预训练模型的基础上改进了三点:
一、采用动态Masking机制,每次向模型输入一个序列时,都会生成一种新的遮盖方式
二、删除了Next Sentence Prediction(NSP)任务
三、增加了预训练过程的预料规模,扩大Batch Size的同时增加了训练时的步长
与BERT模型一致,RoBERTa模型同样使用多个双向Transformer模型的encoder部分堆叠组成主主体框架,能更彻底地捕捉文本中的双向关系

 Transformer-encoder逻辑结构

 残差连接网络结构

 RoBERTa层逻辑结构图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值