树链上的完全背包(树上倍增)

题目大意:

给定一棵n个点n-1条边的树,每个点上有一个重量w[i]和价值c[i],有K个背包,容量分别为1~K。有Q个询问,每组询问给定两个点x,y,,可以取x到y的最短路径上的点的物品(每种无限个),求各个背包的最大价值的和异或和

数据范围:

n,Q<=40000
K<62
1<=w[i]<=K
1<=c[i]<=1000000

solution:

暴力肯定是不行的,很容易想到倍增。在树上进行倍增(像倍增LCA一样(划掉)),算背包DP,(好有道理(划掉))。让我们算一下时间复杂度,O(K²n lg n+KQ lg n),显然会超时,背包合并太慢了,要O(K²)!!!再想想有没有别的idea。
K很小,但是平方一下也不好玩,得去掉这个平方。由于是完全背包,所以有一个很显然的贪心想法,对于用一个重量,只有价值最大的物品是有用的(这不是废话)。所以,只要维护出树链上的各种重量的物品的最大价值。树链剖分和Link-Cut-Tree都可以完美的解决,可是……两个lg过不了……lct的常数……不说话(我就写了lct……access写错了)反正过不了,不管了!我们来看一下正解,话说不需要带修改操作,倍增就可以实现了(写什么lct……),和lca的写法完全一样,顺带更新一下要维护的数据,然后把K个物品处理一下,完全背包。时间复杂度O(Qn lg n+QK²)。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_38601996/article/details/78155995
文章标签: 倍增
个人分类: 倍增
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

树链上的完全背包(树上倍增)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭