一道线性扫描题
T2

给你一个n*m的矩阵,R=每一行最小值的最大值,C=每一列最大值的最小值,求最少修改多少数使R=C。
1 ≤ n, m ≤ 2, 000,0 ≤ Ai, j ≤ 1000,000

分析

呃。。。这题其实我用了一个fkcdalao讲的玄学方法。。。正解O(n*m)不过很麻烦。。。于是。。。蒟蒻打了一个卡过的排序+二分O(n*mlogn)。。。
好像还能用堆和线段树等等奇怪的方法,不过数据结构貌似都被卡了,开了O2后排序+二分很稳。。。


没错上面的都是废话
1、对每一行从小到大排序,f1取排序后每一列最大值
2、对每一列从大到小排序,f2取排序后每一行最小值
3、枚举R=C=x,容易发现x一定在矩阵中出现过否则不是最优
4、二分找有几个f1中最大值比x小,几个f2中的最小值比x大,加起来为x的答案
(这里需要特判一下,因为如果x是最大(小)的,并且x没有出现在矩阵中过,那么答案不是0而是1)

Code

阅读更多
文章标签: 线性扫描
个人分类: 线性扫描
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

一道线性扫描题

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭