智能优化算法:海鸥算法之改进篇

本文介绍了对海鸥算法的改进,通过调整攻击行为提高了算法的收敛速度和精度。在测试CEC基准函数时,改进后的MSOA算法只需120次迭代就能达到优于基本SOA算法10^8到10^10倍的优化效果,且收敛速度大幅提升。这一改进使得MSOA算法的性能可与粒子群、蚁群等成熟算法相媲美。
摘要由CSDN通过智能技术生成

改进海鸥优化算法:优化效果显著提高 1 0 10 10^{10} 1010

       大家好,我是一枚小博士。半个月前,本人发表了第一篇文章——《智能优化算法:海鸥算法原理及Matlab代码》,收到很多朋友的私信和评论,受宠若惊。本人从事研究智能算法已经有4年的时间了,对智能优化也有一些自身的理解,为了更好的服务大家,决定专心将我对智能优化的一些想法,分享给大家。这里面不乏有一些本人最近SCI的投稿文章,所以一些代码可能无法提供,还请大家谅解。如果大家确实对代码有需求,可以私聊,谢谢。

海鸥算法

       对于基本海鸥算法(SOA),这里不做重复赘述,不明白的看官可以浏览上一篇文章,原理、代码介绍的很详细。
链接如下:https://blog.csdn.net/qq_38643813/article/details/109459392
       同样,还是采用CEC基准测试函数:Sphere函数、Ackley函数、Zakharov函数对SOA算法进行测试。测试结果如下:
Sphere函数迭代曲线

图1. Sphere函数迭代曲线图(迭代次数:1000)

在这里插入图片描述

图2. Zakharov函数迭代曲线图(迭代次数:1000)

在这里插入图片描述

图3. Ackley函数迭代曲线图(迭代次数:1000)

改进海鸥算法(MSOA)

       改进算法主要针对攻击行为做出改进,我认为按照作者的思路海鸥群体的攻击行为会大大降低算法前期海鸥的多样性,降低算法的探索能力,因此做出相应改进。
       同样,对上述三个CEC函数进行测试求解。这里请各位看官仔细对比,基本海鸥算法SOA对CEC函数的求解均为1000迭代次数,而改进的海鸥算法(MSOA)的迭代次数为120代,同时收敛精度有一个质的飞跃
在这里插入图片描述

图4.Sphere函数迭代曲线图(迭代次数:120)

在这里插入图片描述

图5. Zakharov函数迭代曲线图(迭代次数:120)

在这里插入图片描述

图6. Ackley函数迭代曲线图(迭代次数:120)

       通过两组图片对比可以很明显的观察到,改进后的海鸥算法其优化性能已经不弱于当下一些成熟的优化算法,如粒子群算法、蚁群算法、进化算法等等
       与SOA算法进行对比,首先,MSOA算法的收敛速度大大提升,这个提升的效果是巨大的,从Ackley函数前后两次收敛曲线看,SOA在1000次时,依旧没有收敛,而MSOA算法在第12次迭代时,就已经收敛。可见其性能之优越;其次,从收敛值观察,MSOA也具有相当大的改善,大致提升 1 0 8 10^8 108~ 1 0 10 10^{10} 1010倍。
       综上所示,改进的海鸥算法可以说非常成功了。因为这篇文章我目前初稿已经完成,但还没有投稿,所以Matlab代码暂时不能给大家提供,请大家谅解。如果某位氪金大佬确实需要,可以私聊我。

       本期交流到这里就结束了,大家有什么问题和疑惑可以私聊我,我一定尽快回复大家。下一期内容目前还没有想好,大家想我做一些关于算法的创新内容还是讲解一下新算法原理呢?大家可以在评论中给予我一定的意见!那么下期见,拜拜!

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值