追逐AI的蜗牛
码龄8年
关注
提问 私信
  • 博客:97,109
    97,109
    总访问量
  • 39
    原创
  • 391,144
    排名
  • 36
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-05-06
博客简介:

qq_38675397的博客

查看详细资料
个人成就
  • 获得110次点赞
  • 内容获得27次评论
  • 获得716次收藏
  • 代码片获得393次分享
创作历程
  • 43篇
    2020年
成就勋章
TA的专栏
  • 机器学习
    8篇
  • 目标检测
    9篇
  • 卷积神经网络CNN
    13篇
  • c/c++
    2篇
兴趣领域 设置
  • 人工智能
    图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深入理解最大似然估计、最大后验概率估计和贝叶斯公式

在博客最大似然估计中,通过简单的例子对最大似然估计原理有了一个直观的理解;在博客朴素贝叶斯分类器中,对贝叶斯公式有了一个粗浅的理解,而且我们知道了贝叶斯分类器原理就是最大后验概率估计。这篇博客主要是深入理解最大似然估计、最大后验概率估计、贝叶斯公式的数学原理和它们之间的联系。基本概念理解 想要搞清楚上述几个原理,首先要弄明白概率、统计、概率函数和似然函数概率 概率研究的是:模型和参数已知,预测模型产生某结果的概率。统计 统计研究的和概率正...
原创
发布博客 2020.08.19 ·
477 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

生成式模型与判别式模型的理解与对比

在机器学习中,我们常常利用数据来对模型建模,不同的建模方式产生了两种不同的模型:生成式模型、判别式模型。判别式模型 由数据学习决策函数Y=f(X)或者条件概率P(Y|X)作为预测模型。判别式模型学习的是不同类别数据的差异性,最终得到最佳分类面生成式模型 由数据学习联合概率P(Y,X)作为预测模型,生成式模型学习的是不同类别数据的相似性,得到一个相似度概率分布,相似度最高的类别即为预测类别对比对比 判别式模型 生成式模型 特点 寻找不...
原创
发布博客 2020.08.18 ·
1235 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

朴素贝叶斯分类器原理解析与python实现

贝叶斯分类器是以贝叶斯原理为基础的分类器的总称,是一种生成式模型,朴素贝叶斯分类器是其中最简单的一种。要高明白贝叶斯分类器的原理,首先得明白一些基本概念。预备知识基本概念 先验概率:根据统计/经验得到的某事情发生的概率,比如北京下雨的概率可以通过以往的经验或者统计结果得到 后验概率:在一定条件下某事情发生的概率,比如北京天空出现乌云(因)会下雨(果)的概率 条件概率:事情发生时某条件出现的概率,比如北京下雨(果)会出现乌云(因)的概率贝...
原创
发布博客 2020.08.18 ·
10528 阅读 ·
19 点赞 ·
8 评论 ·
304 收藏

交叉熵损失函数原理深层理解

说起交叉熵损失函数「Cross Entropy Loss」,相信大家都非常熟悉,但是要深入理解交叉熵损失函数的原理和作用,还得溯本追源才能对其有一个真实的理解与认知。交叉熵 交叉熵是用来度量两个概率分布的差异性的,因此它被广泛的应用于机器学习和深度学习,用来衡量模型学习到的分布和真实分布的差异。要理解交叉熵,需要从信息量、熵、相对熵几个概念开始信息量 信息奠基人香农认为“信息是用来消除随机不确定性的东西”,因此他提出了信息量的概念,信息量表示一条信息消除不...
原创
发布博客 2020.08.14 ·
4440 阅读 ·
13 点赞 ·
1 评论 ·
41 收藏

逻辑回归原理解析及python实现

前两篇讲了线性回归和感知机,铺垫已经做好了,现在终于可以讲讲逻辑回归了。通过之前的博客我们知道,感知机是线性模型在分类问题上的尝试与改进,那么逻辑回归可以看做是感知机的优化,不了解的小伙伴可以参考博客线性回归和感知机引言 为了实现分类的功能,感知机通过sign函数将线性模型的输出y映射成1和-1,sign函数如下 sign函数是一个非连续...
原创
发布博客 2020.08.12 ·
338 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

感知机原理解析与python实现

讲完线性回归本来应该乘热打铁讲讲逻辑回归的,但是我觉得应该先讲解感知机的原理,它不仅可以帮助理解分类和回归,也能帮助理解逻辑回归。引言感知机原理
原创
发布博客 2020.08.12 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

线性回归原理解析及python实现

研究机器学习的小伙伴应该都知道,机器学习主要有两大类模型:分类和回归。这里先大概说一下分类和回归的区别与联系,方便大家对机器学习其他模型有一个宏观的认识。分类和回归联系 其实分类和回归模型本质上是一样的,它们都是通过已有数据构建(求解)一个模型,其中x表示一个n维的特征向量,y表示经过模型的处理后得到的输出结果,而模型的具体表达式可以是千变万化的,这里我们不展开讨论。区别 分类和回归的最主要区别在于模型的输出y,回归模型的输出y是一个连续性的数值型数据;分...
原创
发布博客 2020.08.12 ·
705 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

最大似然估计直观理解(简单易懂)

在理解最大似然的过程中我发现,单纯的对极大似然的理论和数学公式进行解释比较晦涩难懂,下面我通过讲解一个自己设计的例子帮助理解。例子描述 假设现在有1万个灯泡,想要知道这些灯泡的合格率(能点亮为合格)? 如果将1万个灯泡都测试一遍来计算其合格率显然是不现实的,这种情况我们可以对1万个灯泡随机采样,抽取100个灯泡并测试,这100个灯泡的合格率假设通过测试知道80个灯泡可以被点亮,剩下20个不能点亮,那么我们就会估计这1万个灯泡的合格率为80%。极大似然估计...
原创
发布博客 2020.08.10 ·
1495 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

深入理解卷积神经网络工作原理

卷积神经网络的核心思想就是设计多个卷积层,卷积层里设计一系列卷积核,输入数据经过卷积层中的卷积核处理,一层层向前推进得到最终的输出数据,这个过程我们称为数据的特征提取。卷积核 从上面的概述知道,卷积核是卷积神经网络的核心,这也是它为什么叫卷积神经网络的原因。那么要理解卷积神经网络的原理,就必须理解卷积核,而要理解卷积核,要从图像处理开始理解。 ...
原创
发布博客 2020.08.05 ·
1782 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

RuntimeError: ONNX export failed: Couldn‘t export Python operator SwishImplementation

将pytorch模型转为onnx模型,代码如下weights_path = '模型权重的路径'net = EfficientNet.from_name('efficientnet-b2', {'num_classes': 2})net.load_state_dict(torch.load(weights_path))net.eval()torch.onnx.export(net, input, 'efficientnet_ss.onnx')报错:RuntimeError: ONNX ex
原创
发布博客 2020.07.18 ·
4540 阅读 ·
3 点赞 ·
3 评论 ·
8 收藏

EfficientNet原理解析

说到分类网络的优化方法,大家首先想到的可能是加深网络、增加宽度、提高分辨率、添加shortcut等方法,你可能会发现,大家都只是使用某一种方法来进行网络优化,而今天要说的这个EfficientNet网络,则是融合加深网络、增加宽度、提高分辨率这三个方面来对模型进行优化。EfficientNet的作者认为加深网络、增加宽度、提高分辨率这三个方法不应该是相互独立的,因此提出了提出了compound model scaling算法,能达到性能相似的情况下,大大减少模型参数量和提升速度!几种mod...
原创
发布博客 2020.07.07 ·
1431 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

YOLO v3原理解析

YOLO v3是从YOLO v1,YOLO v2逐步改进而来,在继承了v1,v2很多内容的基础上,也有了很多新的改进,一步步提高网络的性能,v1,v2的基础有利于v3的理解,请不熟悉v1,v2的小伙伴先参考一下博客YOLO v1原理解析,YOLO v2原理解析YOLO系列原理概述 通过特征提取网络对输入图像提取特征,得到一定size的feature map,比如13*13,然后将输入图像分成13*13个grid cell,接着如果ground truth中某个object的中...
原创
发布博客 2020.07.03 ·
674 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

YOLO v2原理解析

YOLO v2是YOLO v1的一个升级版本,使其变的Better,Faster,Stronger,下面我从Better和Faster两个角度来说明一下(Stronger部分没看懂)Better YOLO有两个缺点:一个缺点在于定位不准确,另一个缺点在于和基于region proposal的方法相比召回率较低,为了解决这两个问题,YOLO v2使用了很多trick,下面来一一说明Batch Normalization 相信大家对BN已经很熟悉了,如今BN已经...
原创
发布博客 2020.07.03 ·
758 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

YOLO v1原理解析

目标检测网络兴起的那几年,最火的就是大家所熟知的R-CNN系列,正是因为R-CNN系列是two-stage两阶段的检测网络,所以其检测速度比较慢,这个时候就有大神将two-stage整合成one-stage,设计出了YOLO网络,意思是you only look ones,下面就讲解一下YOLO网络的检测原理网络结构YOLO的网络结构很简单,基本的卷积层+最后两个全连接层 网络的输入输出输入:图片,resize成448*448,将图片分成7*7...
原创
发布博客 2020.07.01 ·
429 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

RefineDet网络解析

论文:Single-Shot Refinement Neural Network for Object Detection论文链接:https://arxiv.org/abs/1711.06897 RefineDet网络的设计初衷是在保持one-stage目标检测速度的同时提高检测效果.RefineDet网络结构在我看来可以理解为FPN+ARM(类RPN)+ODM.RefineDet网络结构FPN:FPN网络首先通过一个backbone产生特征金字塔(对应图中上半部分的特征...
原创
发布博客 2020.06.12 ·
462 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Linux pip和conda换清华源

pip设置清华源pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simpleconda设置清华源添加源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/conda config --add channels https://mirrors.tuna.tsinghua.edu
原创
发布博客 2020.06.08 ·
2034 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

RetinaNet网络解析

RetinaNet是何凯明大神提出的一种网络,该网络结构采用FPN网络的结构(请参考博客FPN网络原理解析),其主要创新点在于提出了一个新的损失函数Focal Loss(请参考博客Focal Loss损失函数详解),主要用于解决one-stage目标检测中正负样本极不平衡的问题。关于FPN网络、损失函数Focal Loss的原理上面两篇博客已经写的很详细了,我这里主要说一下以下几点:特征金字塔构建 在ResNet结构上构建FPN,在P3~P7层上构建特征金字塔anchor...
原创
发布博客 2020.06.04 ·
2719 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

Focal Loss损失函数详解

Focal Loss损失函数是何凯明大神在RetinaNet网络中提出的,主要目的是为了解决one-stage目标检测中正负样本极不平衡的问题,下面我们来详细理解一下该函数。背景什么是正负样本极不平衡? 目标检测算法为了定位目标会生成大量的anchor box,而一幅图中目标(正样本)个数很少,大量的anchor box处于背景区域(负样本),这就导致了正负样本极不平衡two-stage为什么可以避免样本极不平衡? two-stage方法在第一阶段生成候...
原创
发布博客 2020.06.02 ·
6662 阅读 ·
6 点赞 ·
0 评论 ·
37 收藏

FPN(Feature Pyramid Networks)网络原理解析

前言 在图像处理中,为了解决多尺度的问题,设计了图像金字塔;在卷积神经网络中,由于网络提取的不同特征层由低到高尺寸逐渐减小,自然形成了特征金字塔。FPN网络就是在特征金字塔的基础上对模型结构引入新的设计,从而提高了对小目标的检测精度。特征金字塔的特点 特征层由低到高所提取的信息丰富程度不同,特征层越高提取的语义信息level越高 特征层由低到高分辨率逐渐减小,感受野却逐渐增大...
原创
发布博客 2020.06.01 ·
4411 阅读 ·
8 点赞 ·
1 评论 ·
28 收藏

SSD网络原理解析

SSD网络是继YOLO之后的one-stage目标检测网络,是为了改善YOLO网络设置的anchor设计的太过于粗糙而提出的,其设计思想主要是多尺度多长宽比的密集锚点设计和特征金字塔,下面我将详细的解析SSD网络结构SSD网络结构精简版详细版通过上面这个图,大家可以清楚的看到SSD的网络结构主要分为以下几个部分:VGG16 Base Layer Extra Feature Layer Detection Layer NMS补充说明:在整个SSD网络中,其...
原创
发布博客 2020.05.30 ·
17865 阅读 ·
20 点赞 ·
3 评论 ·
95 收藏
加载更多