Ribbon2_核心设计和原理分析

摘要: 原文发布在个人博客 Ribbon, Netflix 公司开源的用于进程通信场景的经过实战检验的客户端项目。它提供了远程调用的负载均衡,网络状态检查和容错等功能。Ribbon 基于软件的负载均衡方式与目标集群中的机器进行通信。

原文发布在个人博客

Ribbon, Netflix 公司开源的用于进程通信场景的经过实战检验的客户端项目。它提供了远程调用的负载均衡,网络状态检查和容错等功能。Ribbon 基于软件的负载均衡方式与目标集群中的机器进行通信。这里忽略状态统计部分,健康检查的逻辑部分,重点分析负载均衡部分。
下面是个典型的使用方式开始,先指定一些目标服务器地址,

//sample-client.ribbon.listOfServers=www.taobao.com:80,www.baidu.com:80,www.sina.com:80

然后借助ribbon 封装的 httpClient 来发送请求(访问站点首页),循环20次是希望打印出负载均衡的效果。

...
RestClient client = (RestClient) ClientFactory.getNamedClient("sample-client");  
HttpRequest request = HttpRequest.newBuilder().setUri(new URI("/")).build();
for (int i = 0; i < 20; i++)  {
  HttpResponse response = client.executeWithLoadBalancer(request);
  System.out.println("Status code for " + response.getRequestedURI() + "  :" + response.getStatus());
}

下面按 Ribbon 的主要模块进行设计分析,并在最后部分分析上述代码的效果。

Ribbon-core 模块

这一模块中,主要定义通用的调用抽象。ribbon 的 client 处理请求并返回响应。

public interface IClient<S extends ClientRequest, T extends IResponse> {
    public T execute(S request, IClientConfig requestConfig) throws Exception;
}

ClientRequest, 是独立于所以具体实现的通信协议的抽象。它主要包括:uri(远程资源的定位符),loadBalancerKey(Object类型,这是决定请求调用到目标服务器的关键信息),isRetriable; 当然它的具体实现类,可能还有请求headers,body等信息。

IResponse, 是服务端响应的抽象,主要包括: body(payload),isSuccess(响应状态的简化),响应headers,请求url;

VipAddress 术语,是一个地址的逻辑名,该逻辑名代表一系列目标服务器。比如“apple.bar:80”。

RetryHandler,用来决定哪些异常(比如:ConnectException,SocketTimeoutException)发生时要做重试,哪些异常(SocketException,SocketTimeoutException)发生时表示应该熔断掉(对应服务器)的调用,默认的是不重试。

Ribbon-loadbalancer 模块

负载均衡,宏观上效果是希望将请求的流量均衡(不是简单意义上的平均)的负载到提供服务的服务器之上。而对于每次请求而言,是通过计算拿到一个目标服务器地址的。

  • ILoadBalancer

ILoadBalancer, 负载均衡器的接口。它的核心方法是 public Server chooseServer(Object key); 每次请求发生时根据参数传入的 loadBalancerKey对象,决定出一个目标的服务器地址。Server 表示一个服务器(包括:主机地址,端口号以及一些元数据标识信息)。 那么服务均衡器应该需要有一批可供选择的目标服务集合吧,所以它还有个重要方法addServers(List<Server> newServers),一般在启动阶段就要完成初始化地调用。

  • BaseLoadBalancer

BaseLoadBalancer(实现 ILoadBalancer),这里声明了一个基础lb,应该关联个 IRule(负载均衡的规则)默认是轮询规则:RoundRobinRule)。 它还默认支持一个Ping检查功能(可以帮忙我们定时检查目标服务器是否可通信)的***定时任务***,开发者可以在构造实例时明确指定 Iping(判断一个服务是否还是活的),IPingStrateg 默认是串行地检查策略,但如果目标服务地址过多,或者IPing执行过慢就不太合适。

IRule 路由规则,Rule 和 LoadBalancer 是一对一的相互关联关系,Rule 是具体的负责均衡策略。常见的规则包括: 轮询,随机,基于响应的延迟等; public Server choose(Object key)核心方法的输入输出基本一致,区别是 Rule 拿取目标 server list 是通过借助对应依赖的 LoadBalancer 拿到的。

  • DynamicServerListLoadBalancer

DynamicServerListLoadBalancer(继承 BaseLoadBalancer),事实上从启动后一直不变的 ServerList 场景一般不太多,尤其在微服务场景:服务挂了,扩容,缩容等都会需要对服务消费方的客户端的服务列表做出实时调整(通常借助服务发现产品:eureka,consul,zk...),DynamicServerListLoadBalancer 顾名思义就是针对该类场景的。要做到运行时实时更新,既要保证更新的实时可见,也要保证更新操作本身的同步。

ServerListUpdater,是动态服务列表的更新器。现实场景中一般有个专门提供发布和查询/订阅服务列表服务的角色,这里暂时简称为”远程注册表服务”。更新 ServerList 常见的有两种实现模式:push 或者 pull。 push 机制就是客户端保持对“远程注册表服务”观察就行,服务器发生变化时会,客户端就会及时得到通知。 还有一种 pull 机制,一般是频繁的发请求进行询问“远程注册表服务”是否有变化发生。这个一般建议基于常见的服务发现产品进行实现。

ServerListFilter,是DynamicServerListLoadBalancer的可选构造参数之一。作用是在发生 ServerList 更新时筛选过滤出符合条件的一个子集。 因为 ServerList 可能比较大,包含成百上千台机器地址,如果都尝试去调用,那么客户端的连接数就会非常多,这也会造成必要的消耗。

Ribbon-httpclient 模块

ribbon-loadbalancer 模块中有个 ClientFactory 静态工具类,可以生成和管理多个名字唯一的 IClient 具体实例。ClientFactory.getNamedClient("sample-client");,这里因为未特殊配置(指定具体的 IClient 的实现类),所以选择的是默认的Client实现类 com.netflix.niws.client.http.RestClient。

  • RestClient

RestClient,是 ribbon-httpclient 模块中针对 IClient 的具体实现,通过使用 Jesery Client (实际依赖 apacheHttpClient4 发送 http),同样 HttpRequest 实现 ClientRequest,而HttpResponse 实现了 ClientResponse。

client.executeWithLoadBalancer(request),是client的父类 AbstractLoadBalancerAwareClient 中定义的方法,最终是调用LoadBalancerContext#getServerFromLoadBalancer(URI,loadBalancerKey)方法,该方法主要LB逻辑如下:

Server svc = lb.chooseServer(loadBalancerKey);
if (svc == null){
    throw new ClientException(ClientException.ErrorType.GENERAL,
            "Load balancer does not have available server for client: "
                    + clientName);
}

//... check host not null

logger.debug("{} using LB returned Server: {} for request {}", new Object[]{clientName, svc, original});
return svc;

著作权声明

首次发布于此,转载请保留以上链接


点击打开链接

阅读更多
文章标签: RIBBON
个人分类: 大数据
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭