2757:最长上升子序列

2757:最长上升子序列

package bailian;

import java.util.Arrays;
import java.util.Scanner;

/**
 * 描述
 * 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
 *
 * 你的任务,就是对于给定的序列,求出最长上升子序列的长度。
 * 输入
 * 输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
 * 输出
 * 最长上升子序列的长度。
 */
public class Demo02 {

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        sc.nextLine();
        String line = sc.nextLine();
        String[] nums = line.split(" ");
        int[] numsArr = new int[n];
        for (int i = 0; i < n; i++) {
            numsArr[i] = Integer.parseInt(nums[i]);
        }
        int[] maxLength = new int[n];//存储节点为k的时候的最长上升子序列的长度
        //状态转换方程如下:
        //k=0时 maxLength[0] = 1
        //k=1,2,3...时。maxlength = maxLength[i] + 1(0<i<k,nums[i]<nums[k]) 如果找不到则为1
        maxLength[0] = 1;
        for (int i = 1; i < n; i++) {
            int maxLen = 1;
            for (int j = 0; j < i; j++) {
                if (numsArr[j]<numsArr[i]) {
                    int maxLenTemp = maxLength[j] + 1;
                    if (maxLenTemp > maxLen) {
                        maxLen = maxLenTemp;
                    }
                } else {
                    if (maxLen < 1) {
                        maxLen = 1;
                    }
                }
            }
            maxLength[i] = maxLen;
        }
        int maxlength = maxLength[0];
        for (int i : maxLength) {
            if (i > maxlength) {
                maxlength = i;
            }
        }
        System.out.println(maxlength);
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值