PaddleClas全流程文档合集
项目链接:PaddleClas全流程文档合集
PaddleClas简介:
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
PaddleClas特性
-
丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了29个系列的分类网络结构和训练配置,133个预训练模型和性能评估。
-
SSLD知识蒸馏:基于该方案蒸馏模型的识别准确率普遍提升3%以上。
-
数据增广:支持AutoAugment、Cutout、Cutmix等8种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。
-
10万类图像分类预训练模型:百度自研并开源了基于10万类数据集训练的 ResNet50_vd 模型,在一些实际场景中,使用该预训练模型的识别准确率最多可以提升30%。
-
多种训练方案,包括多机训练、混合精度训练等。
-
多种预测推理、部署方案,包括TensorRT预测、Paddle-Lite预测、模型服务化部署、模型量化、Paddle Hub等。
-
可运行于Linux、Windows、MacOS等多种系统。
模型库概览图
基于ImageNet1k分类数据集,PaddleClas支持29种系列分类网络结构以及对应的133个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
- CPU的评估环境基于骁龙855(SD855)。
- GPU评估环境基于T4机器,在FP32+TensorRT配置下运行500次测得(去除前10次的warmup时间)。
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。
常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。
模型下载或更多内容请查看PaddleClas-GitHub
该合集主要为Windwos环境下PaddleClas套件的全流程使用文档
文档内容主要包括:环境搭建安装,自定义分类数据集,训练,预测,Serving服务部署,Python/C#部署等
文档链接如下:
1. 深度学习环境搭建: Windows-paddle-深度学习环境搭建
项目简介:Windows-环境搭建:CUDA,cuDNN,paddlepaddle-gpu,anaconda,pycharm环境的配置安装
2. PaddleClas全流程文档一(如何使用PaddleClas等):Windows:如何使用PaddleClas做一个完整的项目(一)
项目简介:PaddleClas安装,自定义分类数据集,训练,预测模型转换,预测/训练模型推理等,
3. PaddleClas全流程文档二(基于Hub Serving的服务部署):Windows:PaddleClas基于Hub Serving的服务部署(二)
项目简介:主要展示如何利用Hub部署serving服务用于预测
4. PaddleClas全流程文档三(C++编译exe/dll):Windows:PaddleClas 预测部署(三)
项目简介:C++预测编译,如何使用cmake生成sln解决方案,编译出exe预测程序文件,以及dll库,用于python和C#调用预测

6728

被折叠的 条评论
为什么被折叠?



