在Python中利用pandas读取Microsoft Excel文件

pandas支持通过ExcelFile类或pandas.read_excel函数来读取存储再Excel2001(或更高版文件中的表格型数据。这些工具内部是使用附加包xlrd和openpyxl来分别读取XLS和XLSX文件的。(这里你可能需要使用pip或conda手动安装这些工具。)

1. 读取文件
方法一:使用ExcelFile时,通常将xls或xlsx的路径传入,生成一个实例:

import pandas as pd
xlsx = pd.ExcelFile(r'C:\Users\HUAWEI\Desktop\example.xlsx')

注:上述代码中C:\Users\HUAWEI\Desktop\example.xlsx表示位置在C:\Users\HUAWEI\Desktop的文件example.xlsx,这里不要忘了转移符号r

存储在表中的数据可以通过pandas.read_excel读取到DataFrame中:

pd.read_excel(xlsx, 'Sheet1')     #这里的Sheet1不要忘了首字母大写
#	Unnamed: 0	a	b
#      0	aa	1	3
#      1	bb	2	4

如果读取的文件含有多个表格,此时使用ExcelFile读取文件更快一些,但你也可以使用更简洁的方法二。

方法二:
将文件名直接传入pandas.read_excel:

frame = pd.read_excel(r'C:\Users\HUAWEI\Desktop\example.xlsx', 'Sheet1')
print(frame)
#   Unnamed: 0  a  b
# 0         aa  1  3
# 1         bb  2  4

考虑到代码的可读性,这里也经常将路径付给一个变量(例如path),然后将该变量传给read_excel方法。示例如下:

path = r'C:\Users\HUAWEI\Desktop\example.xlsx'
frame0 = pd.read_excel(path, 'Sheet1')
print(frame0)

2. 写入文件
如果需要将pandas数据写入到Excel格式文件中去,必须明确数据和待写入的文件:

首先在你确定好的路径下生成一个ExcelWriter:

path = r'C:\Users\HUAWEI\Desktop\example1.xlsx'
writer = pd.ExcelWriter(path)

然后使用pandas对象的to_excel方法将数据写入:

frame.to_excel(writer, 'Sheet1')

最后保存:

writer.save()

运行之后你就可以在路径下找到你刚刚写好的文件了!

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页