最优化——对偶问题的性质(弱对偶性,强对偶性),对偶问题形式的书写(对偶规则)

本文探讨了线性规划中对偶性的概念,包括弱对偶性和强对偶性,并详细介绍了互补松弛定理及其数学表达形式。通过对原问题与对偶问题的对比分析,揭示了二者之间的内在联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对偶性质

弱对偶性

原对偶问题任何可行解的目标值都是另一问题最优目标值的界。(推论:原对
偶问题目标值相等的一对可行解是各自的最优解)

强对偶性

原对偶问题只要有一个有最优解,另一个就有最优解,并且最优目标值相等。

对偶问题解之间的关系

在这里插入图片描述

线性规划与其对偶规则的关系

在这里插入图片描述

互补松弛定理

​ 原问题 max ⁡ C T X \max C^{T} X maxCTX 对偶问题 min ⁡ b ⃗ T Y \min \vec{b}^{T} Y minb TY
 s.t.  A X ≤ b ⃗  s.t.  A T Y ≥ C X ≥ 0 Y ≥ 0 \begin{array}{lll} \text { s.t. } A X \leq \vec{b} & \text { s.t. } A^{T} Y \geq C \\ X \geq 0 & \quad\quad Y \geq 0 \end{array}  s.t. AXb X0 s.t. ATYCY0
X ^ \hat{X} X^ Y ^ \hat{Y} Y^ 分别是原问题和对偶问题的可行解,则它 们分别是各自问题最优解的充要条件是满足互补松弛定理等式
Y ^ T ( b ⃗ − A X ^ ) = 0 , X ^ T ( A T Y ^ − C ) = 0 \hat{Y}^{T}(\vec{b}-A \hat{X})=0, \hat{X}^{T}\left(A^{T} \hat{Y}-C\right)=0 Y^T(b AX^)=0,X^T(ATY^C)=0
含义:如果原问题某个不等式是松的(不等于0), 则其相应的对偶变量必须是紧的(等于0), 反之亦然。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值