PAT 甲级 1013 Battle Over Cities (25分)

t is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city​1​​-city​2​​ and city​1​​-city​3​​. Then if city​1​​ is occupied by the enemy, we must have 1 highway repaired, that is the highway city​2​​-city​3​​.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output Specification:

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input:

3 2 3
1 2
1 3
1 2 3

Sample Output:

1
0
0

解决两个问题:1.这道题的本质是通过dfs遍历图,最后要求这个图的连通分量。dfs搜索性质的本质是当一次dfs搜索完成后遍历了一个连通分量,再可以进行第二个点为起点的遍历时连通分量数要加1。dfs 需要对图中的每个结点开始进行遍历,即通过for 循环进行。

2. 对于占领某个结点 i ,只需要将 visited [ i ] 设置为true即可,与点 i 相邻的边不需要处理赋值为0 ,太复杂且难以实行。

 

//输入的格式为  N,M,K   M行代表城市之间的道路  最后一行K个数,检查K次,让剩下的部分连通
// 这一题的本质是求去除某点后的连通分量数目-1

#include <bits/stdc++.h>
#define maxn 1010

using namespace std;


int N;  //N 代表城市的总数
int M;  // M 代表仍存在道路的数目
int K;   // K 代表待检查的城市数目

int depth = 0;
int G[maxn][maxn];
bool visited[maxn];

void dfs(int u)
{
    visited[u] = true;
    for(int i = 1;i<=N;i++)
    {
        if(visited[i]==false && G[u][i]==1)
        {
            dfs(i);
        }
    }
}

void dfs_trave(int c)
{
    visited[c] = true;
    for(int i = 1;i<=N;i++)
    {
        if(visited[i]==false)
        {
            dfs(i);
            depth++;
        }
    }
}

int main()
{
    int a,b,c;
    scanf("%d%d%d",&N,&M,&K);
    for(int i = 0;i<M;i++)
    {
        scanf("%d%d",&a,&b);
        G[a][b] = G[b][a] = 1;
    }
    for(int i = 0;i<K;i++)
    {
        fill(visited,visited+maxn,false);
        depth = 0;
        scanf("%d",&c);
        dfs_trave(c);
        printf("%d\n",depth-1);
    }
    return 0;
}

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页