python学习
文章平均质量分 61
一步步开始学习python这个强大的编程语言
九久呀
一名计算机系学生的博客
展开
-
使用SimpleITK工具进行脑部MRI图像放缩
例:对(32, 32, 32)的图片放缩到(256, 256, 256),原始图片空间为(1.0, 1.0, 1.0)。对图片进行空间设置:放缩后图片空间(1.0, 1.0, 1.0);不对空间进行设置:放缩后的图片空间(0.125, 0.125, 0.125)。需要对MRI图像进行裁剪、放缩,但是要求放缩之后的影像空间必须与原图片的影像空间一致。至此,图片已经完成了放缩,并且放缩后图片的空间与原图片空间大小是同一的。原创 2022-11-14 10:55:47 · 644 阅读 · 2 评论 -
【科研绘图】琴图 +箱型图混合 matplotlib库和seabsorn库的使用
箱型图是用于看数据分布情况。琴图+箱型图的组合也越来越多的应用于论文绘图中。这里使用matplotlib库。logging进行写入日志。上面这张图是琴图+箱型图。原创 2022-08-06 12:28:34 · 1090 阅读 · 0 评论 -
使用python将爬取到的大容量图片写入本地
大图片进行传输时,可能会时间比较长,这里有一个解决办法,使用contextlib库的closing方法进行request.get() ---- 以.tif为例子。原创 2022-08-04 10:27:22 · 286 阅读 · 0 评论 -
fsl左右海马体分割+freesurfer合并
文章目录背景bash直接运行python+nipype实现背景需要分割出海马体。可借鉴方法:深度学习(UNet分割),形态学上的开闭,fsl中的分割。使用fsl种的分割时需要注意,fsl分割分为左海马和右海马方法:使用fsl中的first命令进行分割。先在终端输入first查看需要输入的参数:可以看到-i 要从哪个文件进行提取, -k输出分割文件名称,-m 分割的标准文件(*.bmv),-l 做flirt时的变换矩阵。关于*.bmv文件:fsl自带的,在fsl安装目录data/first下面原创 2022-04-27 16:31:22 · 3101 阅读 · 13 评论 -
【转载】python 调用shell脚本并将输出重定向到文件
相关博客连接: python调用shell脚本+输出重定向https://stackoverflow.com/questions/4760215/running-shell-command-and-capturing-the-outputhttps://linuxhandbook.com/execute-shell-command-python/python执行shell脚本并且重定向输出到文件目的:有一些shell脚本的参数需要调整,在shell中处理有些麻烦,就用python控制参数,然后调用s转载 2022-04-21 22:37:13 · 1670 阅读 · 0 评论 -
经典深度学习模型----VGG
VGG模型网络图:VGG为什么比较经典?证明了使用小的卷积核也可以达到比较高的精度。网络结构:卷积层、池化层、全连接层由于网络中1)卷积层的步长均为2,填充方式均为same,激活函数为relu2)池化层的核大小为2,步长为2,填充方式为same3)x个卷积层后面搭配上一个池化层,并且这x个卷积通道数均一致所以将卷积层和池化层并称为一个VGG块。所以VGG是由很多个VGG块组成的。VGG块编写:def vgg_block(num_conv, num_fliters): '''原创 2021-09-28 20:41:43 · 1018 阅读 · 0 评论 -
win10安装cuda cudnn和tensorflow-gpu 踩坑与正确的出坑姿势
文章目录环境介绍踩坑记录环境介绍GPU:NVIDIA GeForce RTX 3060操作系统:windows10家庭版踩坑记录原创 2021-09-13 14:11:03 · 496 阅读 · 0 评论 -
深度学习入门demo mnist
环境:python3.7gpu: RTX3060CUDA: 11.4cudnn: 8.6tensorflow-gpu: 2.5.0所有的网络层使用全连接层,有BN和dropout,无卷积部分。流程:额外实现:one-hot编码、搭建顺序模型主函数:读取数据----->图片变为向量、label变为one-hot------->训练------>画图代码:import keras.layersimport tensorflow as tffrom tensorfl原创 2021-09-07 14:53:54 · 650 阅读 · 0 评论 -
浅层/深层神经网络
文章目录神经网络的表达能力浅层神经网络的前向传播与反向传播浅层神经网络的表示反向梯度下降激活函数的选择目标:- 知道浅层/深层神经网络的前向和反向计算过程- 掌握激活函数的使用以及选择- 知道神经网络的参数和超参数不用太纠结有几层的神经网络是浅层,有多少层的神经网络是深层,一般的,1、2层,3、4层,浅层没救够了。神经网络的表达能力这段话我目前没有太理解,把原文放上:如果有明白的朋友欢迎留言讨论!浅层神经网络的前向传播与反向传播浅层神经网络的表示假设有一下结构的神经网络:这个网络原创 2021-07-04 14:43:53 · 2703 阅读 · 3 评论 -
【入门】神经网络的最优化过程
文章目录最优化神经网络的链式法则与反向传播算法逻辑回归的推导计算图过程最优化定义:就是寻找参数W,能够使得损失函数值最小。(简略,非数学上的定义)方法:1、找到目标函数(知道目标函数是什么,是cross-entropy或者其它的损失函数,都行)2、找到一个能让目标函数最优化的方法(梯度下降)(当梯度下降应用到神经网络时,会与机器学习的梯度下降不太一样,比如加入链式法则,反向传播算法如何应对比较大的深层/浅层神经网络)3、利用这个方法求解当梯度下降到了神经网络,就不再是凸函数了,也不会是下图右边原创 2021-07-03 19:40:21 · 5251 阅读 · 10 评论 -
CIFAR-10数据集下载
文章目录下载使用说明Python / Matlab versionsBinary version下载Cifar10是一个小型的图片分类的数据集,不详细介绍,参照官网:这里是官网www.cs.toronto.edu看域名就知道是外网下载起来确实比较慢,这里放在了百度云上,一共有三个版本:python,matlab和c,拿走不谢。链接:https://pan.baidu.com/s/1n9Hz_dKjRcf3ZcZ3-8EZ4w提取码:jklm使用说明以下是从官网copy过来的内容:Py原创 2021-06-29 16:58:05 · 4040 阅读 · 1 评论 -
机器学习项目经验总结
文章目录关于特征处理吴恩达老师的方法项目中的方法总结关于训练集测试集的划分关于模型评估关于假设检验Delong testFriedman test 和 Nemenyi后续检验关于特征处理吴恩达老师的方法吴恩达老师的视频中所提到的特征处理的一个原因是为了能够更好的进行梯度下降,我们试想一下,有一个多元的目标函数表达式,这个表达式里有很多特征,如果这些特征取值范围不一样,有的是0~1之间的小数,有的是几百几千的大数,那么如果我们进行梯度下降,则损失函数的等高线映射到平面上就是一个很扁的椭圆,如下图所示:原创 2021-06-23 16:40:28 · 700 阅读 · 0 评论 -
Ubuntu下conda环境激活失败
文章目录情况说明解决情况说明在使用conda创建好的环境时,出现了下面这个问题:CommandNotFoundError: Your shell has not been properly configured to use ‘conda activate’.To initialize your shell, run$ conda init <SHELL_NAME>Currently supported shells are:bashfishtcshxonshzshp原创 2021-06-16 20:20:13 · 2510 阅读 · 1 评论 -
使用逻辑回归进行肿瘤预测
文章目录数据集数据描述导入相关的包数据处理数据读取缺失值处理划分数据集特征工程机器学习模型评估数据集https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin下载.data文件即可数据描述(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤相关的医学特征,最后一列表示肿瘤类型的数值。(2)包含16个缺失值,用”?”标出。导入相关的包import pandas as原创 2021-03-31 11:53:32 · 1305 阅读 · 0 评论 -
预测波士顿房价
使用随机梯度下降(线性拟合里面的一种算法)进行波士顿房价预测,最后使用均方误差进行模型的评判代码:from sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_bostonfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import SGDRegressorfrom sklearn.met原创 2021-03-30 23:11:50 · 145 阅读 · 0 评论 -
预测facebook签到位置
文章目录项目描述数据集介绍学习目标:熟练掌握KNN、数据集划分、交叉验证、网格搜索这些内容。项目描述本次比赛的目的是预测一个人将要签到的地方。 为了本次比赛,Facebook创建了一个虚拟世界,其中包括10公里*10公里共100平方公里的约10万个地方。 对于给定的坐标集,您的任务将根**据用户的位置,准确性和时间戳等预测用户下一次的签到位置。**数据被制作成类似于来自移动设备的位置数据。 请注意:您只能使用提供的数据进行预测。数据集介绍数据集:文件说明 train.csv, test.cs原创 2021-03-30 13:58:37 · 617 阅读 · 0 评论 -
机器学习相关算法基础内容
为什么要学习算法:算法是核心,数据和计算是基础。一、数据类型离散型数据:一个一个点组成的数据连续性数据:一系列连续的数(数轴上的一段)组成的数据,其y值称为概率密度,总体积分结果为1数据类型的不同应用类型不同------算法是有区别的二、机器学习算法分类监督学习:有特征值、目标值无监督学习:只有特征值1、监督学习: 分类(目标值离散)算法:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络 回归(目标值连续)算法:线性回归、岭回归...原创 2020-09-15 17:04:10 · 115 阅读 · 0 评论 -
降维基础
降维:特征的数量 ,易混概念:维度:数组的维度1、特征选择是什么?选取部分特征当做最后分析得数据原因:冗余:部分特征相关性高,计算量大 噪声:部分特征对预测结果有影响主要方法:Filter (过滤式) Embedded(嵌入式):正则化、决策树 Wrapper(包裹式),不怎么用删除地方差特整:删除相似的特征。sklearn主成分分析PCA(主成分分析):特征数量达到上百的时...原创 2020-09-15 16:26:56 · 389 阅读 · 0 评论 -
分类学习基础
机器学习的数据:文件csv数据集的结构:kaggle大数据竞赛平台、真实数据、数据量巨大uci专业数据集,覆盖了生活的方方面面scikit-learn数据量较小,方便学习。结构:特征值+目标值。房子面积、位置、楼层、朝向为特征值 房子面积 房子位置 房子楼层 房子朝向 目标值 样本1 数据1 80 9 3 0 80 样本2 数据2 100 9 5 1 ...原创 2020-09-09 18:04:20 · 234 阅读 · 0 评论 -
matplotlib实战
文章目录股票图股票图# 导入需要的库import tushare as tsimport matplotlib.pyplot as pltimport matplotlib.finance as mpf %matplotlib inline # 设置历史数据区间date1 = (2014, 12, 1) # 起始日期,格式:(年,月,日)元组date2 = (2016, 12, 1) # 结束日期,格式:(年,月,日)元组# 从雅虎财经中获取股票代码601558的历史行情quot原创 2020-05-30 19:35:50 · 262 阅读 · 0 评论 -
Numpy matplotlib
文章目录NumPy Matplotlib图形中文显示绘制正弦波subplot()bar()numpy.histogram()plt()NumPy MatplotlibMatplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。1、Windows 系统安装 Matplotlib进入到 cmd 窗口下,执行以下命令:python -m pip install -U p原创 2020-05-28 18:58:42 · 603 阅读 · 0 评论 -
数据科学 NUMPY包
文章目录前言条形图(bar plots)等高线图(contour plots)点阵图3D图利用matplotlib+numpy绘制多种绘图的方法实例前言matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。本文将以例子的形式分析matplot中支持的,分析中常用的几种图。其中包括填充图、散点图(scatter plots)、. 条形图(bar plots)、等高线图(contour plots)、 点阵图和3D图,下面来一起看看详细转载 2020-05-22 22:43:23 · 250 阅读 · 0 评论 -
pandas索引
文章目录索引对象obj.index不可变性pandas中的主要索引对象索引方法和属性重建索引reindex索引对象obj.indexpandas的索引对象用来保存坐标轴标签和其它元数据(如坐标轴名或名称)。构建一个Series或DataFrame时任何数组或其它序列标签在内部转化为索引:In [68]: obj = Series(range(3), index=['a', 'b', 'c'])In [69]: index = obj.indexIn [70]: indexOut[70]: Ind原创 2020-05-20 20:55:34 · 484 阅读 · 0 评论 -
pandas基础
文章目录安装pandaspandas使用pandas是由series(数据列)和dataframe(由多个数据列组成的数据框)安装pandaswindows:pip install pandasmac:pip3 install pandas导入pandas模块import pandas as pdpandas使用创建一个series类型数据(Series()里直接填一个由数字组成的列表#list_data=[1,2,4,7]#data=pd.Series(list_data)data=原创 2020-05-17 12:02:43 · 165 阅读 · 0 评论 -
numpy介绍
文章目录ndarray数组基础1)数组的创建及使用特殊数组数组索引数组运算数组的拷贝矩阵创建矩阵矩阵运算Numpy线性代数相关函数计算线性方程的解ndarray数组基础python中用列表保存一组值,可将列表当数组使用。另外,python中有array模块,但它不支持多维数组,无论是时列表还是array模块都没有科学运算函数,不适合做矩阵等科学计算。numpy没有使用python本身的数组机制,而是提供了ndarray对象,该对象不仅能方便地存取数组,而且拥有丰富的数组计算函数。使用前先导入Numpy原创 2020-05-13 22:31:40 · 427 阅读 · 0 评论 -
python中的装饰器、面向对象三大特征、运算符重载
文章目录装饰器简介面向对象的三大特征运算符重载装饰器简介在类中对某个方法使用装饰器,该类的对象就可以像调用属性一样去调用该方法,给对应属性增加set和get方法。实例:class Employee: @property def salary(self): print('salary is ...')emp = Employee()emp.salary ...原创 2020-03-30 22:05:30 · 253 阅读 · 0 评论 -
python中的内部函数、对象和类
文章目录嵌套函数(内部函数)nonlocal与globalLEGB规则面向对象与面向过程的区别类的定义构造函数__init__()嵌套函数(内部函数)内部函数只能在外部函数进行调用,如果在外部函数外调用,则报错。# 内部函数def outer(): s = 'this is outer' def inner(): s1 = 'this is inner' ...原创 2020-03-28 22:49:22 · 1145 阅读 · 0 评论 -
Python中的普通函数、参数、lamaba表达式与匿名函数、递归函数
文章目录函数的存储1、函数的存储方式2、弱复制与强复制函数的参数1、必需参数2、关键字参数3、默认参数4、不定长参数lamaba表达式与匿名函数递归函数函数的存储1、函数的存储方式python中使用def进行函数名 的标识。在Python中, 任何变量都是对象,由此可得,函数也是对象,所以在创建函数的时候,在堆中有块儿内存是放函数的语句、函数内部的变量,而函数的名称则是放入栈中。所以 在定义...原创 2020-03-28 10:29:03 · 477 阅读 · 0 评论 -
基于TensorFlow2.1.0的简单CNN实现手写体MNIST数据集识别
文章目录实验环境:识别流程实验环境:操作系统:win10,64位处理器处理器:Intel Corei5内存:16GB编辑工具: Jupyter Notebook所有框架:tensorflow2.1.0 下的keras框架如果没有安装keras,可以打开命令提示符,使用pip install keras即可。识别流程读入数据集数据进行归一化处理、标签进行独热编码处理使用顺序网...原创 2020-03-27 14:52:56 · 1360 阅读 · 0 评论 -
python中的for语句和while语句
文章目录顺序控制语句顺序控制语句1、条件语句Python中语法格式与c++中大同小异。不过Python更方便:(1)取消了用花括号来判断程序属于那一部分,取而代之的是用冒号(2)多个分支情况使用 elif 来代替else if2、循环语句Python中的循环语句使用for循环或者while循环...原创 2020-03-27 09:00:16 · 964 阅读 · 0 评论 -
Python中的字典和集合
文章目录字典1、介绍字典1、介绍字典可以当做c++STL中的map容器(配图看着很像容器)来进行理解。字典类型的数据有两部分组成:键和值,也称为键值对。Python中关于键值对的语法是这样规定的:{key1:value1,key2:value2},例如:a = {1:9,7:0}print(a) #{1: 9, 7: 0}下图是对键值对关联的关系说明字典中的键(key)是不...原创 2020-03-25 20:59:35 · 830 阅读 · 0 评论 -
Python中的列表与元组的相关内容
文章目录列表列表的创建列表的增加和删除操作列表元素的访问和计数列表列表用来存储一系列的数据。其中,列表可以存放任意的字符串类型,每个列表里的元素也可以不一样。本图为列表在内存中的存储示意图,从图中可以看出来,列表中的每个元素都随机分布在内存中,在整合到一起,最后返回整合在一起后的内存块地址。列表的创建先看一下列表的存储方法:1、用[]方法进行创建a = [1,2,3,'123']p...原创 2020-03-22 16:49:24 · 443 阅读 · 0 评论 -
python中的赋值、自动转型、整数缓存、字符串相关问题
链式赋值使用这个方法会很方便进行变量交换比起c++代码要见到多了,c++代码:int a=1,b=2,t;t = b;b = a;a = t;提到了变量,顺便说一下常量。在c++中,如果要定义常量,所用到的方法是:#define MAXN 16660我们用这个方式,定义了常量MAXN,其值固定为16660。在Python中,其实是没有常量的,但出...原创 2020-03-21 12:53:40 · 972 阅读 · 0 评论 -
python介绍、turtle库的使用、命名规范
一、初识python1.1 python介绍Python是一种计算机程序设计语言(开源、免费),由吉多·范罗苏姆创造,第一版发布于1991年,可以视之为一种改良的LISP。Python的设计哲学强调代码的可读性和简洁的语法。相比于C++或Java,Python让开发者能够用更少的代码表达想法。Python是一种面向对象的语言1.2 python能用来干什么python可以用来...原创 2020-03-20 00:36:30 · 1463 阅读 · 0 评论 -
python中turtle库的使用以及一些小例子
turtle库的一些函数:turtle.setup()用于启动一个图形窗口,它有四个参数turtle.setup(width,height,startx,starty),分别是启动窗口的宽度、高度和窗口启动时,窗口左上角在屏幕上的坐标位置。turtle.penup()让画笔离开画布,这样在移动画笔的时候不会出现线条turtle.pendown()放下画笔turtle.circle(...原创 2020-03-20 00:35:51 · 3266 阅读 · 2 评论
分享