题目描述:
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
解析:
class Solution {
public:
int a[58]={0};
int cuttingRope(int n) {
a[2]=1;a[3]=2;
for(int i=4;i<=n;i++)
{
int maxx=0;
for(int j=2;j<i;j++)
{
maxx=max(maxx,j*a[i-j]);
maxx=max(maxx,j*(i-j));
}
a[i]=maxx;
}
return a[n];
}
};
我们使用动态规划的方法,具体每一种情况,我们需要去遍历第一刀的长度,取最大值,但是我们需要注意的是,取最大值的时候我们要取两次max:
maxx=max(maxx,j*a[i-j]);
maxx=max(maxx,j*(i-j));
因为后面一段可能一刀都不切了,这样就不能去a[i-j]了。
运行效率如下:

动态规划解决绳子剪成段的最大乘积问题
该博客介绍了如何使用动态规划方法解决将一根绳子剪成整数段,使得这些段的乘积最大。通过示例解释了算法思路,如当绳子长度为10时,将其剪成3、3、4三段可得到最大乘积36。动态规划过程中,对于每个i,遍历所有可能的第一刀长度并取最大值来更新结果。
240

被折叠的 条评论
为什么被折叠?



