Leetcode-剪绳子

动态规划解决绳子剪成段的最大乘积问题
该博客介绍了如何使用动态规划方法解决将一根绳子剪成整数段,使得这些段的乘积最大。通过示例解释了算法思路,如当绳子长度为10时,将其剪成3、3、4三段可得到最大乘积36。动态规划过程中,对于每个i,遍历所有可能的第一刀长度并取最大值来更新结果。

题目描述:

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

解析:

class Solution {
public:
    int a[58]={0};
    int cuttingRope(int n) {
        a[2]=1;a[3]=2;
        for(int i=4;i<=n;i++)
        {
            int maxx=0;
            for(int j=2;j<i;j++)
            {
                maxx=max(maxx,j*a[i-j]);
                maxx=max(maxx,j*(i-j));
            }
            a[i]=maxx;
        }
        return a[n];
    }
};

我们使用动态规划的方法,具体每一种情况,我们需要去遍历第一刀的长度,取最大值,但是我们需要注意的是,取最大值的时候我们要取两次max:

maxx=max(maxx,j*a[i-j]);

maxx=max(maxx,j*(i-j));

因为后面一段可能一刀都不切了,这样就不能去a[i-j]了。

运行效率如下:

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值