Dean

h哈哈

机器学习---如何理解希尔伯特空间?

我的理解: 做个类比,一般的3D矢量空间(我们最常见的)和Hilbert空间.在3D的矢量空间中, 基底是i,j,k. 维度是3(有限维). 这三个基本的基矢量是完备的(矢量空间中任何一个元素都可以用这3个基底展开,系数唯一), 正交的(不同的基底做点积为0.). 矢量空间中的任意两个元素之间可以...

2018-06-12 10:58:20

阅读数:2379

评论数:0

大数据竞赛平台——Kaggle 入门篇

这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,第一部分简单介绍Kaggle,第二部分将展示解决一个竞赛项目的全过程。如有错误,请指正!1、Kaggle简介...

2018-02-23 12:26:10

阅读数:85

评论数:0

机器学习的10件事

作为一个需要经常向非专业人士解释机器学习的人,我列举了搞懂机器学习必备的十件事。 机器学习意味着从数据中学习 ; AI是一个热点。机器学习不负众望:有数量庞大的令人难以置信的问题,可以通过提供正确的训练数据经过正确的学习算法来解决。把它叫做AI,如果这样可以帮助你推销它,但是...

2017-12-21 12:10:22

阅读数:158

评论数:0

国内优秀的人工智能公司

不知道您目前在哪个领域淌水,但AI作为国内、国际一个炙手可热的领域,人才缺乏程度令人发指(未来五年可能会填补这一空缺),因为各种大公司和初创公司的挖墙脚,把AI人才的身价抬到一个令人发指的高度,很多国内细分领域的创业团队不断地涌出来,根据您个人目前从事的领域以及之后的自身规划,可以有针对性地研究一...

2017-12-18 19:07:10

阅读数:369

评论数:0

10、Tensorflow:梯度下降、随机梯度下降和批量梯度下降

这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近。在梯度下降算法中,都是围绕以下这个式子展开: ∂∂θJ(θ)=∂∂θ12∑i=1m(hθ(x)−y)2∂∂θJ(θ)=∂∂θ12∑i=1m(hθ(x)−y)2 其中在上面的式子中hθ(x)hθ(x)代表,输...

2017-12-16 20:41:05

阅读数:2331

评论数:0

5、Tensorflow:TensorFlow环境搭建-基于ubuntu16 Python3 tensorflow

人最大的长处就是有厉害的大脑。电脑、手机等都是对人大脑的拓展。现今,我们每个人都有这个机会,让自己头脑在智能的帮助下,达到极高的高度。所以,拥抱科技,让智能产品成为我们个人智力的拓展,更好的去生活、去战斗。 用项目引导学习: 我们的目标是用现有最流行的谷歌开源框架TensorFlow,搭建一款...

2017-12-11 21:58:15

阅读数:3527

评论数:0

成为一名机器学习算法工程师,你需要这些必备技能

成为一名合格的开发工程师不是一件简单的事情,需要掌握从开发到调试到优化等一系列能力,这些能力中的每一项掌握起来都需要足够的努力和经验。而要成为一名合格的机器学习算法工程师(以下简称算法工程师)更是难上加难,因为在掌握工程师的通用技能以外,还需要掌握一张不算小的机器学习算法知识网络。下面我们就将成为...

2017-12-11 16:43:34

阅读数:282

评论数:0

机器学习数据集(Dataset)汇总

1. CIFAR-10 & CIFAR-100     CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像。     (类别:airplane,automobile, bird, cat, deer, dog, frog, ...

2017-12-09 21:37:44

阅读数:377

评论数:0

教你如何挑选深度学习GPU

即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又开始面临选择 GPU 的难题。正如我们所知,机器学习的成功与否很大程度上取决于硬件的承载能力。在今年 5 月,我在组装自己的深度学习机器时对市面上的所有 GPU 进行了评测。而在本文中,我们将更加深入地探讨: ...

2017-12-06 14:16:45

阅读数:22319

评论数:0

在Ubuntu 16.04 安装python3.6 环境并设置为默认

1.添加python3.6安装包,并且安装 sudo apt-get install software-properties-common   sudo add-apt-repository ppa:jonathonf/python-3.6 sudo apt-get upda...

2017-11-22 23:25:23

阅读数:559

评论数:0

Richard Sutton经典教材《强化学习》第二版公布(附PDF下载)

强化学习教父 Richard Sutton 的经典教材《Reinforcement Learning:An Introduction》第二版公布啦。本书分为三大部分,共十七章,机器之心对其简介和框架做了扼要介绍,并附上了全书目录、课程代码与资料。 书籍百度网盘:htt...

2017-11-12 16:51:24

阅读数:1982

评论数:0

10 大深度学习架构:计算机视觉优秀从业者必备(附代码实现)

近日,Faizan Shaikh 在 Analytics Vidhya 发表了一篇题为《10 Advanced Deep Learning Architectures Data Scientists Should Know!》的文章,总结了计算机视觉领域已经成效卓著的 10 个深度学习架构,并附...

2017-11-12 16:36:48

阅读数:710

评论数:0

程序员要开始学习深度学习,该如何入手?

看网上搜集的各种庞杂的DL学习资料列表,你可能会被吓死。但实际上大部分学习资料都包含了相当多重复的内容,下面是我个人总结的一些学习经验,希望能去芜存菁,帮助程序员快速进入深度学习的圣殿。 数学基础。如果你去读深度学习的论文,会发现数学对于DL非常重要,线性代数、概率论、甚至微积分都有...

2017-09-19 15:55:59

阅读数:668

评论数:0

机器学习——几种距离度量方法比较

1. 欧氏距离(Euclidean Distance) 欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。 欧氏距离 二维平面上点a(x1,y1)与b(x2,y2)间的欧氏距离: 三维空间点a(x1,y1,z1)与b(x2,y2...

2017-08-29 20:34:54

阅读数:419

评论数:0

TensorFlow极速入门

一、前言 目前,深度学习已经广泛应用于各个领域,比如图像识别,图形定位与检测,语音识别,机器翻译等等,对于这个神奇的领域,很多童鞋想要一探究竟,这里抛砖引玉的简单介绍下最火的深度学习开源框架 tensorflow。本教程不是 cookbook,所以不会将所有的东西都事无巨细的讲到,所有的示例都将...

2017-08-29 20:33:36

阅读数:135

评论数:0

机器学习工程师自学指南

如何成长为一名机器学习工程师? 经常有人这么问,而这篇文章就尝试回答这个问题,其中会谈到关于机器学习的方方面面,从简单的线性回归到最新的神经网络。你不仅将学习如何使用这些技术,还将学习如何从头开始构建它们。 这个指南主要面向计算机视觉(CV),这也是掌握一般知识的最快方式,从CV中获取的经验可...

2017-08-21 18:24:25

阅读数:191

评论数:0

斯坦福CS231n 2017春季课程全公开,视频+PPT+英文字幕

全部课程视频(英文字幕):http://t.cn/R9Dfnxn 所有课程资料、PPT等:http://cs231n.stanford.edu/syllabus.html 课程描述 讲师和助教团队 计算机视觉在我们的社会中已经无处不在,例如应用于搜索、图像理解、apps、地图、医疗、无...

2017-08-16 21:11:43

阅读数:4792

评论数:0

英伟达Volta解读:专为深度学习而生的Tensor Core是什么?

当地时间 5 月 8-11 日,英伟达在加州圣何塞举行了 2017 年的 GPU 技术大会(GTC 2017)。机器之心作为本次大会的特邀媒体,也来到了现场。昨天,英伟达 CEO 黄仁勋在大会上正式发布了目前最先进的加速器 NVIDIA Tesla V100。之后,英伟达开发博客又更新了一篇深度解...

2017-08-01 08:29:44

阅读数:1444

评论数:0

人工智能和机器学习值得关注的6个方向和代表公司

能落地的都是NB,不能落地的都是SB。 人工智能在过去的10年当中取得了长足进步,无论是无人驾驶,还是语音识别、语音合成。在这样的背景下,AI已经成为一个越来越热门的话题,并且已经开始影响我们的日常生活。 以下是人工智能发展值得关注的六个领域,对电子产品和服务的未来将会产生巨大的影响。我将解释...

2017-08-01 08:21:51

阅读数:322

评论数:0

基于递归注意力模型的卷积神经网络:让精细化物体分类成为现实

如今,计算机视觉领域常见物体的图像识别和图像分类对大家来说已不再陌生,但提及精细化物体分类,或许不少人还不太了解。我们先放点图来一起感受一下精细化物体分类的“威力”~ 大家先看看这两张图是同一种鸟吗? 先别急说答案,看了下面两张局部高清图再做决定。  类似的例...

2017-08-01 08:09:13

阅读数:424

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭