图像处理---检测评价函数 intersection-over-union ( IOU )

转载 2018年04月17日 19:02:43

1、概念

在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为: 即检测结果(DetectionResult)与 Ground Truth 的交集比上它们的并集,即为检测的准确率 IoU :

IOU=DetectionResultGroundTruthDetectionResultGroundTruthIOU=DetectionResult⋂GroundTruthDetectionResult⋃GroundTruth

如下图所示:GT = GroundTruth; DR = DetectionResult; 
黄色边框框起来的是:

GTDRGT⋂DR

绿色框框起来的是:
GTDRGT⋃DR

应该够详细了,上幅图直观些。当然最理想的情况就是 DR 与 GT 完全重合,即

IoU=1IoU=1

下面附上图例说明,及 IOU 的python实现,已经测试无误,自行取用。

这里写图片描述

原图: 
这里写图片描述

# -*- coding: utf-8 -*-
"""
Created on Sun Aug 07 14:26:51 2016

@author: Eddy_zheng
"""

def IOU(Reframe,GTframe):
    """
    自定义函数,计算两矩形 IOU,传入为均为矩形对角线,(x,y)  坐标。·
    """
    x1 = Reframe[0];
    y1 = Reframe[1];
    width1 = Reframe[2]-Reframe[0];
    height1 = Reframe[3]-Reframe[1];

    x2 = GTframe[0];
    y2 = GTframe[1];
    width2 = GTframe[2]-GTframe[0];
    height2 = GTframe[3]-GTframe[1];

    endx = max(x1+width1,x2+width2);
    startx = min(x1,x2);
    width = width1+width2-(endx-startx);

    endy = max(y1+height1,y2+height2);
    starty = min(y1,y2);
    height = height1+height2-(endy-starty);

    if width <=0 or height <= 0:
        ratio = 0 # 重叠率为 0 
    else:
        Area = width*height; # 两矩形相交面积
        Area1 = width1*height1; 
        Area2 = width2*height2;
        ratio = Area*1./(Area1+Area2-Area);
    # return IOU
    return ratio,Reframe,GTframe

检测评价函数 intersection-over-union ( IOU/IU )

1、概念 转载自http://blog.csdn.net/eddy_zheng/article/details/52126641在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的...
  • zlrai5895
  • zlrai5895
  • 2017-12-01 19:47:47
  • 152

IoU 检测评价函数 intersection-over-union

转载于点击打开链接 1、概念 在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为: 即检测结果(Detecti...
  • u011770977
  • u011770977
  • 2017-02-05 20:04:32
  • 1058

检测评价函数 intersection-over-union ( IOU )

1、概念 在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为: 即检测结果(DetectionResult)与 Groun...
  • Eddy_zheng
  • Eddy_zheng
  • 2016-08-05 10:28:26
  • 24870

检测评价函数(intersection-over-union, IOU)

在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为:即检测结果(Detection Result)与 Ground Tr...
  • kangyi411
  • kangyi411
  • 2018-01-01 00:57:23
  • 41

matlab中的IoU计算函数

突然在代码中撇到了Faster R-CNN中的IoU计算函数,计算两个bounding box之间的IoU值。IoU计算很简单但是很常用,因为看过多次代码都没有注意过,因此记录一下。该函数比较简单,转...
  • u012905422
  • u012905422
  • 2016-09-27 21:54:40
  • 3098

numpy实现 检测评价函数 intersection-over-union ( IOU )

在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为: 即检测结果(DetectionResult)与 Ground ...
  • weixin_36368407
  • weixin_36368407
  • 2017-05-24 09:38:58
  • 556

目标识别(object detection)中的 IoU(Intersection over Union)

首先直观上来看 IoU 的计算公式: 由上述图示可知,IoU 的计算综合考虑了交集和并集,如何使得 IoU 最大,需要满足,更大的重叠区域,更小的不重叠的区域。两个矩形窗格分别表示: ...
  • lanchunhui
  • lanchunhui
  • 2017-05-04 23:51:10
  • 4420

深度学习中IU、IoU(Intersection over Union)的概念理解以及python程序实现

IoU(Intersection over Union)Intersection over Union是一种测量在特定数据集中检测相应物体准确度的一个标准。我们可以在很多物体检测挑战中,例如PASCA...
  • IAMoldpan
  • IAMoldpan
  • 2017-12-14 10:58:46
  • 1834

图像处理的交并比(IoU)

交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,...
  • TaylorMei
  • TaylorMei
  • 2018-01-21 12:17:18
  • 360

评估指标中IoU/precision/recall/tp/fp/fn/tn的个人理解

在物体检测和图像分割领域的评价体系中,IoU/precision/recall这几个评价指标被广泛应用,读过相应的代码之后会发现由此引出tp/fp/fn/tn的概念。通过查找相关资料,对这几个概念做一...
  • TracelessLe
  • TracelessLe
  • 2017-03-03 22:52:23
  • 2371
收藏助手
不良信息举报
您举报文章:图像处理---检测评价函数 intersection-over-union ( IOU )
举报原因:
原因补充:

(最多只允许输入30个字)