多项式计数预备知识

注:笔者可能没有那么多时间写证明,如需自行查找吧(抱歉)
要系统学的看神仙yyc的blog

斐波那契数列

定 义 F [ 0 ] = 0 , F [ 1 ] = 1 , F [ n ] = F [ n − 1 ] + F [ n − 2 ] ( n > 1 ) \large 定义F[0]=0,F[1]=1,F[n]=F[n-1]+F[n-2](n>1) F[0]=0,F[1]=1,F[n]=F[n1]+F[n2](n>1)

相关结论

  • F [ 1 ] + F [ 2 ] + . . . + F [ n ] = F [ n + 2 ] − 1 \large F[1]+F[2]+...+F[n]=F[n+2]-1 F[1]+F[2]+...+F[n]=F[n+2]1

  • F [ 1 ] + F [ 3 ] + F [ 5 ] + . . . + F [ 2 n − 1 ] = F [ 2 n ] \large F[1]+F[3]+F[5]+...+F[2n-1]=F[2n] F[1]+F[3]+F[5]+...+F[2n1]=F[2n]
    证明: F [ 1 ] = F [ 2 ] , F [ 3 ] = F [ 4 ] − F [ 2 ] , F [ 5 ] = F [ 6 ] − F [ 4 ] F[1]=F[2],F[3]=F[4]-F[2],F[5]=F[6]-F[4] F[1]=F[2],F[3]=F[4]F[2],F[5]=F[6]F[4]累加即可

  • F [ 1 ] 2 + F [ 2 ] 2 + . . . + F [ n ] 2 = F [ n ] F [ n − 1 ] \large F[1]^2+F[2]^2+...+F[n]^2=F[n]F[n-1] F[1]2+F[2]2+...+F[n]2=F[n]F[n1]
    证明: F [ 2 ] 2 = F [ 2 ] ( F [ 3 ] − F [ 1 ] ) = F [ 2 ] F [ 3 ] − F [ 1 ] [ 2 ] F[2]^2=F[2](F[3]-F[1])=F[2]F[3]-F[1][2] F[2]2=F[2](F[3]F[1])=F[2]F[3]F[1][2]累加即可

在这里插入图片描述

生成函数(母函数)

定义
对 于 序 列 a 0 , a 1 , a 2 , . . . . 构 造 一 函 数 G ( x ) = a 0 + a 1 x + a 2 x 2 + . . . . , 则 称 G ( x ) 是 a 0 , a 1 , . . . 的 母 函 数 ( 生 成 函 数 ) 对于序列a_0,a_1,a_2,....构造一函数G(x)=a_0+a_1x+a_2x^2+....,则称G(x)是a_0,a_1,...的母函数(生成函数) a0,a1,a2,....G(x)=a0+a1x+a2x2+....,G(x)a0,a1,...
主要思想
把离散数列和幂级数一一对应起来,
把离散数列间的相互结合关系对应成为幂级数间的运算关系,
最后由幂级数形式来确定离散数列的构造.

一般生成函数(OGF):

在这里插入图片描述

主要封闭形式
借yyc几张图
在这里插入图片描述
在这里插入图片描述

指数生成函数(EGF):

在这里插入图片描述

概率生成函数(PGF)

Ferrers图像

定义
上层格子数不少于下层格子数的图像称为Ferrers图像
在这里插入图片描述

基本性质

  • 每行至少一个格子
  • 绕虚线对称的图像仍然是Ferrers图像,这两个图像称为一对共轭Ferrers图像

基本结论

  • 整数n拆分成k个数的和的拆分数,和数n拆分成最大数为k的拆分数相等。
    证明:可以把n个格子用一个k行的Ferrers图像表示,根据第二条性质可以得出结论

线性常系数齐次递推关系(二阶)

二阶线性常系数齐次递推关系:

f [ n ] + a f [ n − 1 ] + b f [ n − 2 ] = 0 \large f[n]+af[n-1]+bf[n-2]=0 f[n]+af[n1]+bf[n2]=0

   G ( x ) = f [ 0 ] + f [ 1 ] x + f [ 2 ] x 2 + . . . . \ \ G(x)=f[0]+f[1]x+f[2]x^2+....   G(x)=f[0]+f[1]x+f[2]x2+....
a x G ( x ) =       a f [ 0 ] x + a f [ 1 ] x 2 + f [ 2 ] x 3 + . . . . axG(x)=\ \ \ \ \ af[0]x+af[1]x^2+f[2]x^3+.... axG(x)=     af[0]x+af[1]x2+f[2]x3+....
     b x 2 G ( x ) =                      b f [ 0 ] x 2 + a f [ 1 ] x 3 + f [ 2 ] x 4 + . . . . \ \ \ \ bx^2G(x)=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ bf[0]x^2+af[1]x^3+f[2]x^4+....     bx2G(x)=                    bf[0]x2+af[1]x3+f[2]x4+....
用自己定义自己,拿第一条式子加上两条可得
   ( 1 + a x + b x 2 ) G ( x ) = f [ 0 ] + ( a f [ 0 ] + f [ 1 ] ) x + ( a f [ 0 ] + b f [ 1 ] + f [ 2 ] ) x 2 + . . . . \ \ (1+ax+bx^2)G(x)=f[0]+(af[0]+f[1])x+(af[0]+bf[1]+f[2])x^2+....   (1+ax+bx2)G(x)=f[0]+(af[0]+f[1])x+(af[0]+bf[1]+f[2])x2+....

注意到 f [ n ] + a f [ n − 1 ] + b f [ n − 2 ] = 0 f[n]+af[n-1]+bf[n-2]=0 f[n]+af[n1]+bf[n2]=0 所以 [ x 2 ] [x^2] [x2]及后面的被消掉了

可得
( 1 + a x + b x 2 ) G ( x ) = f [ 0 ] + ( a f [ 0 ] + f [ 1 ] ) x (1+ax+bx^2)G(x)=f[0]+(af[0]+f[1])x (1+ax+bx2)G(x)=f[0]+(af[0]+f[1])x
G ( x ) = f [ 0 ] + ( a f [ 0 ] + f [ 1 ] ) x ( 1 + a x + b x 2 ) G(x)=\frac{f[0]+(af[0]+f[1])x}{(1+ax+bx^2)} G(x)=(1+ax+bx2)f[0]+(af[0]+f[1])x
下面那个分母 1 + a x + b x 2 1+ax+bx^2 1+ax+bx2对应的特征方程
x 2 + a x + b = 0 \large x^2+ax+b=0 x2+ax+b=0
把它的根解出来为 r 1 , r 2 r_1,r_2 r1,r2,称之为特征根
然后 1 + a x + b x 2 = ( 1 − r 1 x ) ( 1 − r 2 x ) 1+ax+bx^2=(1-r_1x)(1-r_2x) 1+ax+bx2=(1r1x)(1r2x)
对于 r 1 ! = r 2 r_1!=r_2 r1!=r2
G ( x ) 可 以 表 示 成 G ( x ) = A 1 − r 1 + B 1 − r 2 G(x)可以表示成\large G(x)=\frac{A}{1-r_1}+\frac{B}{1-r_2} G(x)G(x)=1r1A+1r2B
根据生成函数可得
F [ n ] = A r 1 n + B r 2 n F[n]=Ar_1^n+Br_2^n F[n]=Ar1n+Br2n
根据 F [ 0 ] , F [ 1 ] F[0],F[1] F[0],F[1] A , B A,B A,B解出来就行了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值