问答系统中知识图谱采用的技术;语义理解中的语义分析技术;知识图谱的举例;知识库的举例

773 篇文章 40 订阅 ¥99.90 ¥299.90
637 篇文章 4 订阅 ¥199.90 ¥299.90

目录

问答系统中知识图谱采用的技术

命名实体识别

关系抽取

实体融合

知识推理

知识图谱的存储

语义理解中的语义分析技术:

词汇语义分析

句法分析

语境分析

语义角色标注

知识图谱的举例

百度知识图谱

医药知识图谱

知识库的举例

企业内部知识库

学术知识库


问答系统中知识图谱采用的技术

命名实体识别

文本中识别出具有特定意义的实体,比如人物、地点、组织、时间等。这是构建知识图谱的基础步骤,只有准确地识别出实体,才能将其纳入知识图谱中。例如,在一篇新闻报道中,系统要能够识别出 “深圳” 是一个地点实体,“腾讯公司” 是一个组织实体等。常用的技术包括基于规则的方法、机器学习方法(如支持向量机、隐马尔可夫模型等)以及深度学习方法(如循环神经网络、卷积神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值