Transformer模型中,Encoder(编码器)和Decoder(解码器)

773 篇文章 40 订阅 ¥99.90 ¥299.90
637 篇文章 4 订阅 ¥199.90 ¥299.90
230 篇文章 2 订阅

目录

Transformer 中的 Encoder 作用

Transformer模型中,Encoder(编码器)和Decoder(解码器)

Encoder的作用

Decoder的作用

文本摘要:简单举例

机器翻译:简单举例


  1. Transformer 中的 Encoder 作用

    • 功能概述
      • Encoder 主要用于对输入序列进行特征提取和信息编码。它将输入序列(如句子)转换为一系列连续的向量表示,这些向量包含了输入序列的语义和语法信息,并且能够捕捉序列中各个元素之间的关系。
    • 简单示例(以机器翻译为例)
      • 假设我们要将英文句子 “I love natural language processing” 翻译为中文。
      • 首先,Encoder 会接收英文句子作为输入,将句子中的每个单词(“I”“love”“natural”“language”“processing”)转换为词向量,并且结合位置编码(用于表示单词在句子中的位置信息)。
      • 然后,通过多个 Transformer 层中的自注意力机制(Self - Attention)和前馈神经网络(Feed - Forward Network)来处理这些向量。自注意力机制会计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值