LLM连续提示可以看作是多个离散提示的组合

LLM连续提示可以看作是多个离散提示的组合

一、研究背景:连续提示的“黑箱”困境

  1. 连续提示的优势:在聊天机器人、文本分类等NLP任务中,连续提示(一种数值向量)能让预训练模型(如BERT)表现更好,但它像“黑箱”一样难以解释。
  2. 离散提示的局限:离散提示(如“这篇评论是[情感词]”中的“情感词”)容易理解,但性能不如连续提示,且跨模型迁移困难

二、核心观点:连续提示=离散提示的“加权拼图”

  1. 组合假设:作者认为,连续提示本质上是多个离散提示的加权组合。例如,一个用于情感分类的连续提示,可能由**“剧情”“糟糕”“看起来”等离散词按不同权重**组合而成。在这里插入图片描述

  2. 数学解释:连续提示可视为去掉“只能选一个词”限制的离散提示表。就像用不同颜色的颜料调和出一种新颜色,离散提示通过权重叠加形成连续提示。

三、如何验证?——让离散提示“模拟”连续提示

  1. 优化目标:设计一个框架,同时满足两个条件:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值