LLM连续提示可以看作是多个离散提示的组合
一、研究背景:连续提示的“黑箱”困境
- 连续提示的优势:在聊天机器人、文本分类等NLP任务中,连续提示(一种数值向量)能让预训练模型(如BERT)表现更好,但它像“黑箱”一样难以解释。
- 离散提示的局限:离散提示(如“这篇评论是[情感词]”中的“情感词”)容易理解,但性能不如连续提示,且跨模型迁移困难。
二、核心观点:连续提示=离散提示的“加权拼图”
-
组合假设:作者认为,连续提示本质上是多个离散提示的加权组合。例如,一个用于情感分类的连续提示,可能由**“剧情”“糟糕”“看起来”等离散词按不同权重**组合而成。
-
数学解释:连续提示可视为去掉“只能选一个词”限制的离散提示表。就像用不同颜色的颜料调和出一种新颜色,离散提示通过权重叠加形成连续提示。
三、如何验证?——让离散提示“模拟”连续提示
- 优化目标:设计一个框架,同时满足两个条件: