弓长^_^张
码龄7年
关注
提问 私信
  • 博客:64,728
    动态:5
    64,733
    总访问量
  • 11
    原创
  • 1,056,570
    排名
  • 57
    粉丝
  • 0
    铁粉

个人简介:哀吾生之须臾

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-06-01
博客简介:

弓长^_^张的博客

查看详细资料
个人成就
  • 获得349次点赞
  • 内容获得82次评论
  • 获得435次收藏
创作历程
  • 3篇
    2021年
  • 5篇
    2020年
  • 3篇
    2019年
成就勋章
TA的专栏
  • 大数据比赛
    1篇
  • 深度学习
    3篇
  • 自编码器
    2篇
  • python
    1篇
  • 瞎搞搞
    4篇
  • 机器学习
  • AI、CV入门
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理nlp数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

mmdetection修改源码来进行backbone结构改进

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录1、找到mmdet中的backbone相关的模型源码2、修改backbone源码3、修改对应的config代码总结本文以mobilenet作为backbone举例1、找到mmdet中的backbone相关的模型源码首先要找到你安装在虚拟环境中的mmdet库的路径,mmdet中的源码文件如下图所示:在mmdet->models->backbones文件夹下就都是各种特征提取的backbone源码了2、修改ba
原创
发布博客 2021.11.30 ·
7029 阅读 ·
20 点赞 ·
0 评论 ·
89 收藏

numpy广播机制加速距离矩阵计算(numpy永远的神!)

由于楼主最近在打比赛,要对目标检测后的结果做分类,下游的分类任务需要与类别标签库中的图片做相似度计算,需要求距离矩阵,目标检测框出的图像特征reshape后是一个479432048的矩阵,总共有近1亿个元素,带查询库中的图像特征是310692048的矩阵,要求这两个超级大矩阵的距离矩阵。首先想到的最朴素的思想就是for循环;尝试了之后发现需要耗费1200秒时间,但是比赛限制了inference时间要在30min以内,于是我想要加速经过查询后得知,numpy的广播机制对于矩阵运算的效率提升十分明显,于
原创
发布博客 2021.06.21 ·
725 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

多核cpu加速opencv图像读取

楼主最近在打一个图像算法的比赛,每次调试CV算法时需要从本地硬盘中读取近5w张图片,尽管opencv自带了许多加速优化,但是仍然需要耗费460+秒,如下图所示但是楼主使用的服务器是16核的至强(Xeon),由于读取图片修改并存储是没有逻辑上的先后的,于是就想是否可以开多进程,调用所有核实现正真的并行,查了一下,还真可以,代码如下:import jsonimport cv2import osimport shutilimport timefrom multiprocessing import
原创
发布博客 2021.06.21 ·
2619 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

Mathtype与word粘贴快捷键ctrl+v冲突——Mathtype不能够嵌入word做插件(word中Mathtype始终灰色)

最近小编重装了mathtype7.4,在使用word时mathtype编辑的公式直接复制到word中直接使用ctrl+v不能够粘贴,而且普通文本在使用时也不能够用快捷键ctrl+v粘贴,这下小编立马慌了。立马用上网查找原因,才发现原来是在安装mathtype时,mathtype有些文件没能够找到word的文件夹并且添加进去,后来我照着网上的方法试了一遍遂解决问题,下面是具体的步骤总结。1、在word中添加mathtype信用位置,信任位置可以直接复制C:\Program Files\Microsoft
原创
发布博客 2020.05.24 ·
21835 阅读 ·
150 点赞 ·
47 评论 ·
156 收藏

Mathtype中的公式复制到Word时一直显示:{EMBED Equation.DSMT4}

今天在mathtype敲完公式后,复制进Word,却发现只显示:{EMBED Equation.DSMT4},右击黏贴成图片格式又能显示完整公式,但是无法编辑,闹心了一个多小时,卸载了mathtype6,重装了mathtype7还是没有,差点就激动地重装office了,查了半天原来是因为公式属于域,我不知道碰了什么快捷键,设置成了显示与代码。可以通过下面方法来修改设置。打开word->点击...
原创
发布博客 2020.03.04 ·
10451 阅读 ·
108 点赞 ·
18 评论 ·
20 收藏

WIN10下快速搭建pytorch-gpu+python3.6+CUDA9+cudnn7深度学习环境

由于之前安装tensorflow的时候踩了不少坑(大家有需要的可以看一下我之前写的tensorflow安装过程),所以我现在搭建深度学习环境已经十分熟练啦(哈哈哈)。话不多说,下面就来说一下怎么搭建pytorch并配合英伟达GPU加速。首先我先来说一下我已开始大概的思路:先用anaconda创建一个python3.6的虚拟环境,然后再往里面加入pytorch等需要的一系列深度学习相关的库。首先第...
原创
发布博客 2020.02.13 ·
870 阅读 ·
3 点赞 ·
4 评论 ·
5 收藏

自编码器二探——深度变分自编码器

接着上次的深度自编码器之后,我们再来讨论一下深度变分自编码器。在讲之前我们先来回顾一下上次的内容。那么我们可以来看一看传统自编码器的缺点。首先传统的自编码器只是对数据进行了一个非线性变换,而对中间的编码出来的隐变量没有具体的约束,就导致隐变量不会有某种特定的分布了;其次就是传统的自编码器所提取出来的特征是具体的值(我们可以近似理解这个特征是“硬的”),这就会使得模型的鲁棒性不会很好,而有时候我...
原创
发布博客 2020.02.10 ·
607 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

自编码器初探——深度自编码器

因为最近在研究对抗自编码器,所以想对编码器有个大致的了解,于是就从最基础的自编码器开始看起,正好熟悉一下keras模型的搭建以及其各种各样的函数和层的调用,最后还会介绍一下如何用tensorboard将训练过程中的一些误差和精度可视化。简单介绍一下自编码器,按照我的理解(理解可能会不是很到位,大家有问题可以留言),我们所说的自编码器通常包含了编码(encoder)和解码(decoder)两部分。...
原创
发布博客 2020.01.30 ·
1813 阅读 ·
5 点赞 ·
1 评论 ·
18 收藏

浅尝CNN之LeNet的原理简述及Python实现

今天是1024,大家的节日,最近在看CNN,所以来总结一下,顺带摸一个1024勋章,嘿嘿嘿!LeNet-5模型是Yann LeCun教授与1998年在论文Gradient-based learning applied to document recognition中提出的,它是第一个成功应用于数字识别问题的卷积神经网络。首先先甩上Yann LeCun教授的论文(是我见到的最长的论文):链...
原创
发布博客 2019.10.24 ·
1538 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

2019年TI杯全国大学生电子设计竞赛总结反思与经验交流

2019年TI杯全国大学生电子设计竞赛终于尘埃落定,作为有三年电赛经验的小编来说,今年很有幸能够走完整个电赛流程(还差一步最后的全国颁奖,哈哈哈),再次特别感谢我的队友DYC、YXB还有一个学机械的外援童鞋(我还不知道他的名字:D)正是因为我们分工明确,团结协作才取得了国一的理想成绩(国一是在意料之中的,本想着能够去争一争TI杯的,由于水平有限还是没能够被邀请展示),好啦,废话不多说啦,下面小编...
原创
发布博客 2019.09.04 ·
14125 阅读 ·
43 点赞 ·
12 评论 ·
103 收藏

WIN10下用anaconda安装tensorflow-gpu1.8.0并用pycharm作编译器(WIN10下anaconda+tensorflow-gpu+pycharm)

哈哈哈,又到了写BLOG的时候啦!题目有点长,想要装tensorflow-gpu的同志们请耐心的看下去,尤其是想要用pycharm作编译器的筒子们,小编这里将提供最简单的方法实现anaconda+tensorflow-gpu1.8.0+pycharm!!!(是小编自己摸索了整整三天才搭建好环境的,其中心态崩了好几次)话不多说,快点来搭建环境吧。小编使用的是python3.6所以适配的是anac...
原创
发布博客 2019.10.24 ·
1842 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏