小亮,该睡觉啦!
码龄8年
关注
提问 私信
  • 博客:905
    905
    总访问量
  • 2
    原创
  • 1,226,302
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:宁夏
  • 加入CSDN时间: 2017-06-03
博客简介:

qq_39027827的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得1次收藏
创作历程
  • 2篇
    2021年
成就勋章
TA的专栏
  • flink
    2篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

接下来我们学习Flink的WordCount

接下来我们学习Flink的WordCount 首先,我们需要在pom文件中添加需要的依赖 <properties> <flink.version>1.12.0</flink.version> <java.version>1.8</java.version> <scala.binary.version>2.11</scala.binary.version> <slf4j.version&g
原创
发布博客 2021.03.25 ·
123 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink特点与Spark的比较

Flink特点: 重要特点: 1.1事件驱动型,是具有状态的应用,从事件流中提取数据,并根据时间来触发计算、更新状态或其他操作。SparkStreaming就是为批次处理,这是与Flink的最大区别。 1.2.流与批的世界观:其中,批处理的特点是,有界、持久、大量,数据是一个批次一个批次的来,通常用于T+1模式。流处理的特点,无界、实时,数据是一条一条的来,通常用于T+0的模式。在Spark中,一切都是由批组成,离线数据是一个大批次,实时数据是一个小批次。在Flink中,一切都是由流组成,离线数据是有界
原创
发布博客 2021.03.24 ·
783 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏