消息队列
- 消息的概念:“消息”是在两台计算机间传送的数据单位。消息可以非常简单,例如只包含文本字符串;也可以更复杂,可能包含嵌入对象。消息被发送到队列中。
- “消息队列”是在消息的传输过程中保存消息的容器。消息队列管理器在将消息从它的源中继到它的目标时充当中间人。队列的主要目的是提供路由并保证消息的传递;如果发送消息时接收者不可用,消息队列会保留消息,直到可以成功地传递它。
- 概念:消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构
- 分类:使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ
2 应用场景
- 异步处理
- 应用解耦
- 流量削锋
- 消息通讯
- 日志处理
2.1 异步处理
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种
- 串行方式
- 串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端
- 串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端
- 并行方式
- 并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间
- 并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间
- 假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
- 因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)
小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?
- 引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
- 按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。
2.2 应用解耦
- 场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图
- 传统模式的缺点:
- 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败。
- 订单系统与库存系统耦合。
如何解决以上问题呢?引入应用消息队列后的方案,如下图:
- 订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功
- 库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作
- 假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦
2.3 流量削锋
- 流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛
- 应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
- 可以控制活动的人数
- 可以缓解短时间内高流量压垮应用
- 用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。
- 秒杀业务根据消息队列中的请求信息,再做后续处理。
2.4 消息通讯
- 消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。点对点通讯:
- 客户端A和客户端B使用同一队列,进行消息通讯。聊天室通讯:
- 客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。
- 以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。
2.5 日志处理
- 日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:
-
日志采集客户端,负责日志数据采集,定时写受写入Kafka队列
-
Kafka消息队列,负责日志数据的接收,存储和转发
-
日志处理应用:订阅并消费kafka队列中的日志数据
-
Kafka:接收用户日志的消息队列。
-
Logstash:做日志解析,统一成JSON输出给Elasticsearch。
-
Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。
-
Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。
-