道格拉斯矢量曲线抽稀算法C#语言非递归实现
1. 道格拉斯-普克算法简介
道格拉斯-普克算法(Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法、迭代适应点算法、分裂与合并算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法。该算法的原始类型分别由乌尔斯·拉默(Urs Ramer)于1972年以及大卫·道格拉斯(David Douglas)和托马斯·普克(Thomas Peucker)于1973年提出,并在之后的数十年中由其他学者予以完善。
经典的Douglas-Peucker算法描述如下:
- 在曲线首尾两点A,B之间连接一条直线AB,该直线为曲线的弦;
- 得到曲线上离该直线段距离最大的点C,计算其与AB的距离d;
- 比较该距离与预先给定的阈值threshold的大小,如果小于threshold,则该直线段作为曲线的近似,该段曲线处理完毕。
- 如果距离大于阈值,则用C将曲线分为两段AC和BC,并分别对两段取信进行1~3的处理。
- 当所有曲线都处理完毕时,依次连接各个分割点形成的折线,即可以作为曲线的近似。
由上述可见,道格拉斯-普克算法是一种过程递归的算法。在实际使用道格拉斯抽稀算法时,使用递归会使得在递归过程中存在大量的临时变量。现参考吴铭杰1论文中的非递归方式实现道格拉斯抽稀算法。该方法简单实用,容易编写代码,具有较高的安全性。
2. C#语言非递归实现
下面给出该算法的C#语言非递归实现,所用到的类方法均使用静态方法以减少开销提高效率:
其中SeriesPoint类型为System.Windows.Point的类化;DataSeries类型为SeriesPoint集合的封装(实现IEnumerable和ICollection<>接口)。
// 道格拉斯抽稀算法
public static DataSeries DouglasThinningMachine(DataSeries seriesPoints)
{
if (seriesPoints == null)
{
throw new ArgumentNullException(nameof(seriesPoints));
}
List<SeriesPoint> spList = seriesPoints.series;
int max = spList.Count;
if (max < 500)
{
return seriesPoints;
}
// 此处限定了距离阈值
double threshold = 10;
int location = 0;
// 创建两个栈记录索引值
Stack<int> A