道格拉斯矢量曲线抽稀算法C#语言非递归实现

本文介绍了道格拉斯-普克算法,这是一种用于曲线抽稀的算法,旨在减少点的数量。文章详细阐述了算法原理,并提供了C#语言的非递归实现方式,降低了内存开销,提高了效率。经过测试,算法在1000个数据点上运行,用时约4毫秒,保留430个点,展现出良好的抽稀效果。
摘要由CSDN通过智能技术生成

道格拉斯矢量曲线抽稀算法C#语言非递归实现

1. 道格拉斯-普克算法简介

道格拉斯-普克算法(Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法、迭代适应点算法、分裂与合并算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法。该算法的原始类型分别由乌尔斯·拉默(Urs Ramer)于1972年以及大卫·道格拉斯(David Douglas)和托马斯·普克(Thomas Peucker)于1973年提出,并在之后的数十年中由其他学者予以完善。

经典的Douglas-Peucker算法描述如下:

  1. 在曲线首尾两点A,B之间连接一条直线AB,该直线为曲线的弦;
  2. 得到曲线上离该直线段距离最大的点C,计算其与AB的距离d;
  3. 比较该距离与预先给定的阈值threshold的大小,如果小于threshold,则该直线段作为曲线的近似,该段曲线处理完毕。
  4. 如果距离大于阈值,则用C将曲线分为两段AC和BC,并分别对两段取信进行1~3的处理。
  5. 当所有曲线都处理完毕时,依次连接各个分割点形成的折线,即可以作为曲线的近似。

由上述可见,道格拉斯-普克算法是一种过程递归的算法。在实际使用道格拉斯抽稀算法时,使用递归会使得在递归过程中存在大量的临时变量。现参考吴铭杰1论文中的非递归方式实现道格拉斯抽稀算法。该方法简单实用,容易编写代码,具有较高的安全性。

2. C#语言非递归实现

下面给出该算法的C#语言非递归实现,所用到的类方法均使用静态方法以减少开销提高效率:
其中SeriesPoint类型为System.Windows.Point的类化;DataSeries类型为SeriesPoint集合的封装(实现IEnumerable和ICollection<>接口)。

// 道格拉斯抽稀算法
public static DataSeries DouglasThinningMachine(DataSeries seriesPoints)
{
   
	if (seriesPoints == null)
	{
   
		throw new ArgumentNullException(nameof(seriesPoints));
	}
	List<SeriesPoint> spList = seriesPoints.series;
	int max = spList.Count;
	if (max < 500)
	{
   
		return seriesPoints;
	}
	// 此处限定了距离阈值
	double threshold = 10;
	int location = 0;
	// 创建两个栈记录索引值
	Stack<int> A 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值