1001. 害死人不偿命的(3n+1)猜想 (15)
卡拉兹(Callatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?
输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式:输出从n计算到1需要的步数。
输入样例:
3
输出样例:
5
1001. 害死人不偿命的(3n + 1)猜想(15)
#include<stdio.h>
#include<cmath>
int main()
{
int n, i = 0;
scanf("%d", &n);
while (n != 1)
{
if (n % 2 == 0)
n /= 2;
else
n = (3 * n + 1) / 2;
i++;
}
printf("%d", i);
return 0;
}
1002. 写出这个数 (20)
读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字。
输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。这里保证n小于10100。
输出格式:在一行内输出n的各位数字之和的每一位,拼音数字间有1 空格,但一行中最后一个拼音数字后没有空格。
输入样例:
1234567890987654321123456789
输出样例:
yi san wu
#include<iostream>
using namespace std;
int main()
{
char *b[] = { "ling","yi","er","san","si","wu","liu","qi","ba","jiu" };
char n[101] = {0};
int i = 0, j = 0, s = 0, a[10] = { 0 };
cin >> n;
for (i = 0; n[i] != '\0'; i++)
s = s + (int)(n[i]-'0');
for (i = 0; s; s /= 10, i++)
a[i] = s % 10;
for (; i-2 >= 0; i--)
{
j = a[i-1];
cout << b[j] << " ";
}
j = a[0];
cout << b[j];
}