蓝桥杯 历届试题 连号区间数(c语言)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_39111912/article/details/88980094
连号区间数
时间限制:1.0s 内存限制:256.0MB

问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出格式
输出一个整数,表示不同连号区间的数目。

样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9

思路:

      暴力遍历每一种可能的区间,但不对区间里的数进行排序,排序将会导致超时

      避免超时的方法:
            通过标记找出区间中的最小数min并统计该区间中数的个数count及区间中数
      的总和sum,计算理论值:(min+min+count-1)*count/2与实际值sum进行比较,
      若相等则为连号区间

#include <stdio.h>
int main()
{	
	int n;
	scanf("%d",&n);
	int i,j,Min,sum,count;
	int a[n];
	int sumNum=n;
	for(i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
	}
	for(i=0;i<n;i++)
	{
		Min=a[i];
		sum=a[i];
		count=1;
		for(j=i+1;j<n;j++)
		{
			count++;
			sum=sum+a[j];
			if(a[j]<Min)
				Min=a[j];
			if((Min+Min+count-1)*count/2==sum)
				sumNum++;
		}
	}
	printf("%d",sumNum);
	return 0;
} 
展开阅读全文

没有更多推荐了,返回首页