Python实战10:印度女性安全现状及改进措施探讨 本数据集涵盖了从2001年至2021年间针对妇女的一系列犯罪行为的全州统计数据。该数据集详细记录了各类针对女性的犯罪案例,本研究项目将重点对这些犯罪行为进行地区分布、时间趋势以及相互关联性的深入分析。
Python实战08:在线书店主题对用户参与度与购买率的影响分析 一家在线书店正在优化其网站设计,旨在通过提供深色主题和浅色主题来提高用户参与度与购买率。本项目通过描述性可视化、假设检验和皮尔逊相关性分析方法来探索不同主题对用户的影响。
Python实战06:电商用户行为分析与聚类 本研究通过分层分析深入探讨了用户活跃度,结合RFM模型对用户价值进行了全面评估。且进一步探索了将融合RFM得分与原始指标的复合特征作为K-Means聚类算法的输入,以期实现更精准的用户细分。然而,实验结果显示这种方法并未达到预期的聚类效果,提示在用户分群策略中需审慎考量特征工程的选择与优化。
Python实战05:银行客户流失分析与预测(超详细) 本研究案例通过综合运用统计方法,包括皮尔逊相关性、T/U检验及卡方检验,精准筛选对客户流失具有预测价值的特征。这些精选特征随后被输入随机森林模型,经由精细的参数调优以优化模型性能,特别是针对ROC-AUC值进行最大化,确保预测既准确又具备高度区分力。
Python实战03:关于运动员伤病预测数据的探索 数据处理主要用pandas和numpy,可视化主要使用matplotlib、plotly、seaborn,机器学习算法模型使用了随机森林算法来预测特征的重要性。
Python实战02:披萨订单数据分析 每天销量最好是在中午12点到13点和傍晚18点到19点,而下午和晚上仍有一些销量;每日销量大概在100-200范围之内;每周销量大概在6000-8000范围之内,其中周五销量最高;从月度销量来看,销量最好的是七月,九月十月跌倒低估了,整体来看销量有些波动;在每个季节中销量似乎是差不多,由此可见披萨基本上不受季节影响。披萨平均单价为16.5元,其中尺寸越大单价就越贵,其中L码披萨销量最高,依次是M和S码;不同种类披萨单价都差不多,其中经典披萨很受人喜欢,其余三个种类不相上下。
Python的GUI库——Tkinter快速入门 请先确保本电脑下载了Tkinter库,再跟我一起踏上Tkinter之旅吧~设计界面时至少有一个窗口,对否?以下demo的800x600是该窗口的大小,+0+50是该窗口离屏幕左上角的水平偏移和垂直偏移。如果想让该窗口位于屏幕中心呈现,该如何做?使用winfo_screenwidth方法即可获取该屏幕的宽度,然后进行计算水平偏移,高度同理。例如:.title()、.maxsize/minsize()、.config()、.iconbitmap()等等。是对用户拖曳该窗口的最大/小尺寸的限制。
Excel数据同步到数据库的Python自动化脚本 我上个月搭建了finebi看板,需要每天定时更新数据,但数据源是excel(finebi暂时不支持),需要自己在服务器搭建mysql,再写个excelToMySQL的python自动化脚本然后通过服务器的任务计划程序设置定时启动就能实现。
Python数据清洗——不同数据类型缺失值的填充 现有两张excel文件,通过python实现定时自动更新到数据库。如果源数据有缺失值,数据库将会报错:nan can not be used with MySQL。就是说需要处理好缺失值,就万事大吉了。
在windows server 2012r2下安装MySQL(新手避雷指南) 在windows server 2012r2下部署数据库MySQL,一路碰到各种坑,特此将其记录下来,为小伙伴扫雷,安全下车。