自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(83)
  • 资源 (2)
  • 收藏
  • 关注

原创 mysql-条件查询

一、准备工作:-- students表create table students( id int unsigned primary key auto_increment not null, name varchar(20) default '', age tinyint unsigned default 0, height decimal(5,2), gender enum('男','女','中性','保密') default '保密', cls_id

2021-02-20 14:53:53 166 1

原创 mysql基本操作命令

1、数据库基本操作命令(1)查看所有数据库show databases;(2)查看当前使用的数据库select database();(3)创建数据库create database 数据库名 chaset=utf8;(4)使用数据库use 数据库名;(5)删除数据库(慎重)drop database 数据库名;2、数据表基本操作命令(1)查看数据库中的所有表格show tables;(2)查看表结构desc 表名;(3)查看建表语

2021-02-15 23:49:04 141

原创 ubuntu系统mysql环境搭建以及mysql数据类型介绍

1、服务端安装(ubuntu系统)sudo apt-get install mysql-server

2021-02-15 09:09:10 249

原创 GIL全局解释器锁

计算密集型:多进程io密集型:多线程

2021-02-14 23:51:37 97

原创 Django模型类操作数据表

1、创建项目名django-admin startproject my_first_django # 创建一个名称为my_first_django的项目命令执行后会产生一个项目名称的文件夹和一个manage.py 文件manage.py是项目的管理文件。my_first_django中的结构如下: Django 开发中一个功能模块用一个应用来实现2、创建一个应用python manage.py startapp boo...

2021-02-14 23:51:00 331

原创 算法时间复杂度的计算

时间复杂度的计算规则:①基本操作,认为其时间复杂度为O(1) # 加减乘除等类似的操作②顺序结构,时间复杂度按加法进行计算③循环结构,时间复杂度按乘法进行计算④分支结构,时间复杂度取最大值⑤判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略⑥在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度 ...

2021-01-27 17:21:36 6393

原创 python 自己编写多任务静态服务器

import socketimport threadingimport sysclass HttpWebServer(): def __init__(self, port): # 1.编写一个TCP服务端程序 # 创建一个socket self.tcp_server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 设置端口可重用 sel.

2021-01-27 01:23:22 176

原创 tensorflow2.x中的data_format的解释

data_format A string, one ofchannels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size,height,width,channels)whilechannels_firstcorresponds to inputs with sh...

2021-01-07 13:16:12 588

原创 tensorflow2.x 图片填充式不失真的resize

在图片预处理的时候往往需要保证原始图像的长宽尺寸保持不变,达到resize前后不失真的效果,但是数据集中很难保证每个样本图像长宽比例相等。为了保证不失真,在图像周围做0填充是不错的选择。tensorflow2.x提供了很多图片预处理的API,实现填充式resize我们使用的是tf.image.resize_with_pad( image, target_height, target_width, method=ResizeMethod.BILINEAR, antialias=Fal...

2021-01-06 10:21:13 1947

原创 python中map()函数的用法

map()会根据提供的函数对指定序列做映射。map(function, iterable, ...)function -- 函数 iterable -- 一个或多个序列可迭代对象只有一个时:a = [1, 2, 3, 4, 5, 6, 7, 8, 9]# 对a内部的元素进行平方new_a = map(lambda i: i * i, a)for n in new_a: print(n)结果如下:可迭代对象有多个时:a = [1, 2, 3, 4,.

2021-01-04 22:06:29 253 1

原创 python中的filter()函数的用法

filter函数是一个python的内置函数,用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象filter(function, iterable)function -- 判断函数。 iterable -- 可迭代对象。如果function 返回True 则将当前值加入新的可迭代对象中举例:一个列表[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],我们想获取列表内的所有奇数元素a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]def is_o

2021-01-04 21:26:11 5369

原创 华为街景语义分割数据集json文件转换为label标签

今天遇见了一个复杂的问题。华为语义分割街景数据集给的是json文件,并非已经生成的label图片。刚开始不知道怎么搞,想通过cityscapes数据集的cityscapesScripts-master工具制作,但是捣鼓半天未果。于是想没有轮子自己造呗。。。。。。呃呃呃,难受不扯别的看下图,你会发现其实,json文件里面是一个字典,自定里面最重要的就是红框里面的的东西,包含了每一个物体的外接封闭多边形的顶点坐标,如果不理解这句话多读几遍。我们的目标就是生成一幅图像,让这些封闭区域内都填充相应的目标值

2021-01-03 21:40:06 1503 14

原创 python 压缩文件

import zipfileimport osz = zipfile.ZipFile('demo.zip', 'w', zipfile.ZIP_DEFLATED) # demo.zip为压缩后的文件名startdir = "demo" # demo 为压缩目标for dirpath, dirnames, filenames in os.walk(startdir): for filename in fil.

2020-12-23 09:21:54 196

原创 tensorflow2.0 自定义线性回归类

import tensorflow as tfX = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])y = tf.constant([[10.0], [20.0]])class Liner(tf.keras.Model): """ 自定义线性回归类 """ def __init__(self): super().__init__() self.dense = tf.keras.la.

2020-12-17 15:06:24 142

原创 鼠标自动移动 防止锁屏睡眠

import pyautoguiimport randomimport timewhile True: time.sleep(10) x = random.randint(500,800) y = random.randint(500,800) try: pyautogui.moveTo(x,y,duration=2) except: print('好家伙!竟然有错,不过没关系') ...

2020-12-16 09:14:26 4186

原创 torch中的view()和reshape()的区别

torch的view()与reshape()方法都可以用来重塑tensor的shape,区别就是使用的条件不一样。view()方法只适用于满足连续性条件的tensor,并且该操作不会开辟新的内存空间,只是产生了对原存储空间的一个新别称和引用,返回值是视图。而reshape()方法的返回值既可以是视图,也可以是副本,当满足连续性条件时返回view,否则返回副本[ 此时等价于先调用contiguous()方法在使用view() ]。因此当不确能否使用view时,可以使用reshape。如果只是想简单地重塑一个t

2020-12-15 09:11:15 6767 1

原创 opencv 提取图像中的面积最大的轮廓外接矩形

前言:一个很实在的栗子:假设我们在图像分割为一幅2值图像,图像里不能保证每个像素点的正确分类,但是总体分割效果还算ok。分割图像里存在噪声点,例如图一,图中最大的空白区域为我们想要得到的区域,那些比较小的奇形怪状的小白区域可以理解为图像分割中的一些分割错误的噪声点,我们想把我们的最大区域单独从图像里扣出来,如图二。 图一 ...

2020-10-10 16:57:12 22180 11

原创 opencv 图像垂直翻转

import cv2import glob_dir = glob.glob('./*.jpg') n = 0for i in _dir: img = cv2.imread(i) if img.shape[0] > img.shape[1]: trans_img = cv2.transpose(img) new_img = cv2.flip(trans_img, 1) cv2.imwrite('./r/'+str(n)+'.

2020-10-09 21:07:43 435

原创 tensorflow2.0自定义损失函数和评估指标

1、自定义损失函数需要继承 tf.keras.losses.Loss 类,重写 call 方法即可,输入真实值 y_true 和模型预测值 y_pred ,输出模型预测值和真实值之间通过自定义的损失函数计算出的损失值。下面的示例为均方差损失函数:class MeanSquaredError(tf.keras.losses.Loss): def call(self, y_true, y_pred): return tf.reduce_mean(tf.square(y_pred -

2020-09-30 16:56:30 1213

原创 tf2.x出现:FAILED TO GET CONVOLUTION ALGORITHM. THIS IS PROBABLY BECAUSE CUDNN FAILED TO INITIALIZE

physical_devices = tf.config.experimental.list_physical_devices('GPU')assert len(physical_devices) > 0, "Not enough GPU hardware devices available"tf.config.experimental.set_memory_growth(physical_devices[0], True)加上上述代码即可

2020-09-29 22:01:39 267

原创 随机森林构造过程中为什么要随机抽样训练集?而且要有放回的抽样?

1.为什么要随机抽样训练集?如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的2.为什么要有放回地抽样?如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。...

2020-09-20 08:45:23 1801 1

原创 正规方程的推导过程

2020-09-15 18:24:28 474

原创 python 提取字符串里面的数字

import redemo = '''[[12,33,22],[44,12,34],[19,29,77]]result = [int(i) for i in re.findall(r"\d+\.?\d*",demo)]print(result)# [12, 33, 22, 44, 12, 34, 19, 29, 77]

2020-09-07 21:29:03 279

原创 python 列表嵌套 取出每个子列表内的所有值 并去重

场景: a 为列表内嵌套列表如下a = [["AA", "BB", "CC"], ["BB", "DD", "FF", ], ["AA", "FF"], ["EE", "DD", "BB"], ["WW", "XX", "CC", "TT", "RR"]]目标:取出列表内的所有值,并要求去重思路1:双重for循环,遍历内层列表里的值,引入第二个列表,追加值时候先判断当前值是否在第二个列表内,有则舍弃,无则追加, (太low太土代码太长)思路2:列表推导式内双for循环,如下

2020-09-07 17:08:01 5431 1

原创 matplotlib 无法显示中文

matplotlib 无法显示中文时,只需要在导入matplotlib模块后面添加一下代码即可正常显示中文from pylab import mplmpl.rcParams['font.sans-serif']=['SimHei'] # 简体mpl.rcParams['axes.unicode_minus']= False

2020-09-04 15:32:23 189

原创 OpenCv图像处理——中值滤波

中值滤波原理中值滤波属于非线性平滑滤波。中值为一组数x1, x2, …, xn ,把n个数按值的大小顺序排列如下: 中值y噪声的出现,使被处理点像素比周围像素亮(暗)许多。以被处理点为中心,选取一个邻域窗口,窗口内所有点值排序,取中值代替该点值。例如:代码实现import cv2lena_noise = cv2.imread("lenaNoise...

2020-01-01 12:19:24 848

原创 OpenCv图像处理——方框滤波

方框滤波原理利用opencv的boxFilter函数:处理结果 = cv2.boxFliter(原始图像, 目标图像深度, 核大小, normalize)目标图像深度:一般情况下我们将目标图像深度设置为-1,表示与原始图像一致。核大小:方框滤波的方框的行数和列数。normalize:是否对目标图像进行归一化操作。当normalize = 1时,表示要进行归一化操作,此时...

2020-01-01 11:43:20 1220

原创 OpenCv图像处理——高斯滤波

高斯滤波原理以某一像素为中心,在它的周围选择一个局部邻域,把邻域内像素的灰度按照高斯正态分布曲线进行统计,分配相应的权值系数,然后将邻域内所有点的加权平均值代替原像素值。其中,k, l是根据所选邻域大小确定。二维高斯函数图: 正态分布曲线为钟形形状;表明:离中心原点越近,高斯函数取值越大。正态分布常被用来进行权值分配。理解高斯滤波可以参...

2019-12-31 21:50:00 982

原创 OpenCv图像处理——均值滤波

均值滤波原理以某一像素为中心,在它的周围选择一邻域,将邻域内所有点的均值(灰度值相加求平均)来代替原来像素值。S:点(x,y)为中心的邻域;M:邻域S内总像素数目 如此以此类推直到如下:边界像素处理??通常边界像素有两种处理方法:1.不进行处理,保留原值。2.在这些像素周围构建邻域,例如重复边界像素,然后再进行处理。效果分析:若邻域内存在...

2019-12-31 19:04:41 1635 1

原创 OpenCv图像处理——数字水印

前言在一幅数字图像中最低有效位是指构成一个像素点的灰度值的二进制数的第0位,由于第0位的数值在图像的显示上面往往作用非常小,所含能量非常小,因此我们可以利用该性质,在数字图像的最低位加入需要隐藏的信息,该信息称之为数字水印。数字水印的信息类型可以有很多种比如,文本、视频、音频二值图像等等。为了研究方便本文讨论数字水印为二值图像的情况。实现过程1、预处理隐藏信息首先将需要加密的图像进...

2019-12-05 23:20:26 3860

原创 OpenCv图像处理——图像加密和解密

一般情况下,图像的加密和解密过程是通过按位异或运算实现的。将原始图像与密钥图像进行按位异或,可以实现加密,将加密后的图像与密钥图像再进行按位异或可以实现解密过程。一、基本原理按位异或运算的基本规则如下表:算子1 算子2 结果 规则 0 0 0 xor(0, 0) = 0 0 1 1 xor(0, 1) = 1 1 ...

2019-12-05 15:21:50 6571 1

原创 OpenCv图像处理——位平面分解

图像的位平面分解一般分为5个步骤:1.图片预处理2.构造提取矩阵3.提取位平面4.阈值处理5.显示图像以灰度图像的位平面分解为例,代码如下:import cv2 import numpy as npdemo = cv2.imread("demo.jpg", 0)cv2.imshow("demo", demo)r, c = demo.shape ...

2019-12-05 00:54:58 3153 4

原创 数字图像处理——图像中的噪声

噪声的本质噪声的本质是真实信号与理想信号之间存在的偏差,由于在图像的获取、传输和存储过程中,受到各种噪声的干扰和影响,图像的质量会有不同程度的下降。根据噪声源的不同对噪声常见分类1,高斯噪声高斯噪声的产生是由于电子元器件中的点在随机热运动产生的,此类的噪声很早就被人们建立了数学模型,它可由零均值高斯白噪声作为其模型。这类噪声噪声出现位置是分布在每一像素点上,幅度值是随机的,分布近似...

2019-11-20 14:23:55 3575 2

原创 基于matlab的图像线性灰度变换

1.基本线性灰度变换只需要记住一个公式:g(x, y) = f(x, y) * tan a当 tan a >1时,会使得图像变亮当tan a =1时,前后图像不发生变化当tan a<1时,图像变暗Image =im2double(rgb2gray(imread('hehua.bmp')));[h, w] = size(Image);Image1 = zer...

2019-11-14 22:24:45 19193 2

原创 matlab图像几何变换的实现

1.水平平移clcI1=imread('D:/123.jpg');gray_image=rgb2gray(I1);[r,s]=size(gray_image);I2=zeros(r,s);dx=50;dy=50;trans=[1 0 0 ;0 1 0; dx dy 1];for i=1:r for j=1:s temp=[i j 1]; ...

2019-10-24 00:47:30 677

原创 通过jaxp方式解析xml文件

1.首先创建一个person.xml文件<?xml version="1.0" encoding="UTF-8" standalone="no"?><person> <p1> <name>张大狗</name> <age>20</age> </p1>...

2019-08-05 12:39:17 216

原创 python在指定范围内产生n个不重复的随机数的两种办法

一、常规的方法自己定义#用于在一个整数范围内产生n个随机数,注意范围内的整数个数要小于所需的随机数的个数#第一个参数表示开始的范围,第二个参数表示结束的范围,第三个表示产生随机数的个数#最后返回的是一个列表import randomclass CreateRandomPage: def __init__(self, begin, end, needcount): ...

2019-04-19 16:32:04 23446 3

原创 python汉诺塔

#总的来说就是递归,#将假如有n层,共三根柱子,分别是X,Y,Z 第一步将上面n-1层给移动到Y柱子上,#然后将上的第n个也就是最大的那层移动到Z上,#最后将Y上的n-1移动到Z上def hanoi(n,x,y,z): if n == 1: print(x,'-->',z) else: hanoi(n-1,x,z,y)#将n-1...

2019-04-08 17:37:16 151

原创 C语言输入一段文章统计字数,并把每一个单词的第一个字母该为大写

#include "stdio.h"void main(){ char ch[1000000]; int i,j=0; gets(ch); for(i=0;ch[i]!='\0';i++) { if(ch[i]!=32&&(ch[i+1]==32||ch[i+1]=='\0')) //如果当前字符不为空格且...

2019-03-18 21:53:46 1082

原创 C语言 输入一个不大于五位的数字,先判断是几位数字,然后将其数字顺序输出和逆序输出

#include &lt;stdio.h&gt;#include &lt;math.h&gt;void main(){ int function(int a); int x,w,y,A[5]; printf("请输入一个1至99999的整数\n"); scanf("%d",&amp;x); y=function(x); w=y; ...

2018-10-12 16:25:39 3273 6

常用预训练网络权重.txt

包含了常用的预训练网络的模型: inception_v3_weights_tf_dim_ordering_tf_kernels.h5 inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 inception_v3_weights_tf_dim_ordering_tf_kernels_notop_update.h5 inception_v3_weights_tf_dim_ordering_tf_kernels_update.h5 mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_224_no_top.h5 resnet50_weights_tf_dim_ordering_tf_kernels.h5 resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 vgg16_weights_tf_dim_ordering_tf_kernels.h5 vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 vgg19_weights_tf_dim_ordering_tf_kernels.h5 vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5 xception_weights_tf_dim_ordering_tf_kernels.h5 xception_weights_tf_dim_ordering_tf_kernels_notop.h5

2020-04-26

Python美食小程序带Djang后台

本程序适合初学小白,初步接触Django和微信小程序开发结合的童鞋可以借鉴!

2019-01-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除