__山顶洞人__
码龄8年
求更新 关注
提问 私信
  • 博客:212,708
    社区:31
    动态:63
    212,802
    总访问量
  • 83
    原创
  • 159
    粉丝
  • 112
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:内蒙古
加入CSDN时间: 2017-06-16
博客简介:

qq_39197555的博客

查看详细资料
个人成就
  • 获得205次点赞
  • 内容获得59次评论
  • 获得1,191次收藏
  • 代码片获得2,795次分享
  • 博客总排名620,459名
创作历程
  • 1篇
    2022年
  • 51篇
    2021年
  • 15篇
    2020年
  • 12篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • opencv-python图像处理
    12篇
  • c语言常见问题
    4篇
  • 深度学习tf2.0
    9篇
  • 笔记自己看的
  • 数据结构与算法
    4篇
  • python常见问题
    11篇
  • 目标检测
    1篇
  • 机器学习
    17篇
  • plt绘图
    1篇
  • 数学
    1篇
  • 多目标追踪
    1篇
  • django
    5篇
  • mysql学习
    7篇
  • python后端
    1篇
  • 憨憨的笔记
    2篇
  • torch常见问题
    1篇
  • java常见问题
    2篇
  • 图像处理Matlab
    3篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    深度学习神经网络tensorflowpytorch图像处理
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

66人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

tensorflow语义分割计算mIoU时忽略某一类别

在做语义分割的时候,有不少数据集中的部分类别是我们不想让其参与mIoU计算的。tensorflow忽略某一类别计算mIoU的方法网上比较少。经过阅读tensorflow文档,总结出一下求解方法:数据准备:1、先理解一维张量:假设有张量a,ba = np.array([0, 1, 2, 3]) # 真实b = np.array([0, 1, 0, 3]) # 预测手动计算一下mIoU类别0:= 交集 / 并集 = 1 / 2 = 0.5类别1:= 1 / 1 =
原创
发布博客 2022.04.30 ·
1879 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

python列表删除所有满足某条件的值

# 删除列表中所有值等于1或者2的元素a = [1, 1, 1, 2, 2, 3, 4, 5, 1, 2, 3, 4, 2]b = list(filter(lambda x: x!=1 and x!=2, a))print(b)# b: [3, 4, 5, 3, 4]
原创
发布博客 2021.11.10 ·
3287 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

lightGBM算法API参数说明

1 lightGBM的安装windows下:pip3 install lightgbmmac下:安装链接2 lightGBM参数介绍2.1 Control ParametersControl Parameters 含义 用法 max_depth 树的最大深度 当模型过拟合时,可以考虑首先降低 max_depth min_data_in_leaf 叶子可能具有的最小记录数 默认20,过拟合时用 feature_fraction 例如
原创
发布博客 2021.09.13 ·
664 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

XGBoost API 参数

1 xgboost的安装:官网链接:https://xgboost.readthedocs.io/en/latest/pip3 install xgboost2 xgboost参数介绍xgboost虽然被称为kaggle比赛神奇,但是,我们要想训练出不错的模型,必须要给参数传递合适的值。xgboost中封装了很多参数,主要由三种类型构成:通用参数(general parameters),Booster 参数(booster parameters)和学习目标参数(task parame
原创
发布博客 2021.09.12 ·
524 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

tensorflow2.1 构建Vgg16、GoogLeNet-v1、resNet18

一、Vgg16from tensorflow.keras.layers import Conv2D, Dense, BatchNormalization, ReLU, MaxPool2D, Flatten, Dropout, InputLayerfrom tensorflow.keras.models import Sequentialdef make_block(conv_num, filters): """ :param conv_num: 卷积层数量 :para
原创
发布博客 2021.09.01 ·
584 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

C语言选择排序

#include<stdio.h>#include<stdlib.h>int main(){ int i, j = 0; int a[] = { 2,3,44,5,1,2,70,77,90,23,45,6,7,88,10,9 }; int n = sizeof(a) / sizeof(a[1]); int temp=0; printf("排序前数组为:
"); for (i = 0; i <= n - 1; i++) { printf("%4d.
原创
发布博客 2021.08.28 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C语言队列的两种实现

### 本文比较注重动手能力,关于各种数据结构的理论知识请查阅书籍或相关网页,代码部分都有注释一、基于循序表的循环队列#include<stdlib.h>#include<stdio.h>#define MaxSize 20typedef struct{ int data[MaxSize]; int front,rear;}squeue, *squlink;//清空队列void Clearsqueue(squlink q){ q->front=
原创
发布博客 2021.08.20 ·
192 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C语言中栈的两种实现方法

一、顺序栈#include<stdio.h>#include<stdlib.h>#define maxsize 64//定义栈typedef struct{ int data[maxsize]; int top;}sqstack,*sqslink;//设置栈空void Clearstack(sqslink s){ s->top=-1;}//判断栈空int Emptystack(sqslink s){ if (s->top&
原创
发布博客 2021.08.19 ·
736 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

c语言链表

#include<stdio.h>#include<stdlib.h>struct Student{ int s_number; float s_score; struct Student *next;};struct Student * create(){ struct Student *head=NULL, *p1, *p2; while(1) { p1 = (struct Student *) malloc(sizeof(struct .
原创
发布博客 2021.07.28 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C语言 冒泡排序

#include<stdio.h>#include <stdlib.h>int main(){ int array[10]={0}; for(int i=0;i<=9;i++){ int n = rand(); array[i]=n; } for(int i=0;i<=9;i++){ printf("%12d",array[i]); } for(int i=9;i>0;i--){ for(int j=0;j<=i-1;j++.
原创
发布博客 2021.07.11 ·
155 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

plt 绘制矩形框

import matplotlib.pyplot as pltimport matplotlib.patches as mpathesimport numpy as npimport mathx = 6.53023y = 3.970426l = math.sqrt(1+2.5*2.5)angle_1 = 0.5194235 angle_2 = math.atan(1/2.5) point_start = (x-l*math.cos(angle_1+angle_2), y-l*math.
原创
发布博客 2021.04.22 ·
3712 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

机器学习中的Bagging

一、前言(1)集成学习集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。(2)集成学习中boosting和Bagging在集成学习中boosting是用来解决欠拟合问题,Bagging是用来解决过拟合问题。只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的。二、Bagging和随机森林(1)Bagging集成原理目标:把下面的圈和方块进行分.
原创
发布博客 2021.04.02 ·
730 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

决策树API、泰坦尼克号生存预测案例

一、决策树API在sklearn中使用sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)构建决策树其中:criterion 特征选择标准 "gini"或者"entropy",前者代表基尼系数,后者代表信息增益。一默认"gini",即CART算法。 min_samples_split 内部节点再划分所需最小样本数 这个值限制了子树继续划分的条件,如果某节点
原创
发布博客 2021.03.31 ·
293 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习中的特征提取

特征提取是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,特征提取是为了计算机更好的去理解数据。特征提取大体上可以分为三大类:字典特征提取(特征离散化) 文本特征提取 图像特征提取(深度学习)本篇文章中我们只讨论前两种特征提取方法。一、字典特征提取作用:对字典数据进行特征值化。APIsklearn.feature_extraction.DictVectorizer(sparse=True,…)DictVectorizer.fit_transform(X) X:字
原创
发布博客 2021.03.30 ·
7633 阅读 ·
3 点赞 ·
0 评论 ·
60 收藏

ID3、C4.5、cart决策树的比较

(1)公式:(2)ID3 算法缺点:ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息. ​ ID3算法只能对描述属性为离散型属性的数据集构造决策树。(3)C4.5算法 做出的改进(为什么使用C4.5要好)​ 用信息增益率来选择属性 ​ 可以处理连续数值型属性 ​ 采用了一种后剪枝方法 ​ 对于缺失值的处理C4.5算法的优缺点​ ...
原创
发布博客 2021.03.30 ·
1946 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

基尼值和基尼指数

CART 决策树 [Breiman et al., 1984] 使用"基尼指数" (Gini index)来选择划分属性。CART 是Classification and Regression Tree的简称,这是一种著名的决策树学习算法,分类和回归任务都可用。一、基尼值和基尼指数基尼值Gini(D):从数据集D中随机抽取两个样本,其类别标记不一致的概率。故,Gini(D)值越小,数据集D的纯度越高。数据集 D 的纯度可用基尼值来度量: ...
原创
发布博客 2021.03.30 ·
6860 阅读 ·
13 点赞 ·
1 评论 ·
53 收藏

熵、信息增益、信息增益率

一、熵(1)原理初中物理我们对“熵”这个东西懵懵懂懂,印象中仿佛对物体内部的热效应有关,时隔这么多年在机器学习、深度学习领域的学习中又看见了它的踪影,不免有点让人有点熟悉又陌生的感觉。“熵”这个东西看不见又摸不着,到底什么是“熵”?“熵”是用来干什么的?“熵”是一个系统里面的混乱程度的度量、标尺。系统混乱程度越低,系统的熵值越小,反之越大。我们先从物理学的角度出发,假设相同条件下有一桶冰水和一桶热水,哪一个的熵值会大呢?冰水中的分子热运动速度较慢,内部的分子排布比较有规律。热水内部温
原创
发布博客 2021.03.29 ·
10930 阅读 ·
19 点赞 ·
0 评论 ·
130 收藏

机器学习分类任务中怎么解决类别不平衡问题

一、准备工作(1)Imblearn安装当遇到数据类别不平衡的时候,我们该如何处理。在Python中,有Imblearn包,它就是为处理数据比例失衡而生的。安装Imblearn,默认是在python3.6版本及以上。在安装的时候注意要使用管理员的权限,否则可能会报错,如果是windows系统,要是用管理员方式打开cmd窗口,如果是linux环境,需要加上sudopip install imbalanced-learn(2)创造类别不平衡数据集from sklearn.dataset
原创
发布博客 2021.03.29 ·
928 阅读 ·
1 点赞 ·
2 评论 ·
15 收藏

分类模型的评估方法

(1)混淆矩阵在分类任务中,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵,既适用于二分类任务,又适用于多分类任务。(2)精确率(Precision)与召回率(Recall)准确率 =(TP+TN)/ (TP+FP+FN+TN)精确率:预测结果为正例样本中真实为正例的比例(了解) = TP / (TP + FP)召回率:真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力) = TP.
原创
发布博客 2021.03.28 ·
3423 阅读 ·
0 点赞 ·
0 评论 ·
23 收藏

逻辑回归、肿瘤预测案例

一、逻辑回归(1)定义与使用场景逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。应用场景举例:是否为垃圾邮件 是否患病 金融诈骗 虚假账号看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的一种方法。(2)逻辑回归的输入与输出逻辑回归的输入其实就先线性回归的输出,可以简单的理解h(w)就是逻辑回归的输入。..
原创
发布博客 2021.03.28 ·
866 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏
加载更多