SSIM论文翻译 论文地址:https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf图像质量评估:从错误可见性到结构相似性摘要:传统上,评价感知图像质量的客观方法试图利用人类视觉系统的各种已知属性,量化失真图像和参考图像之间的误差的可见性。在假定人类视觉感知高度适应从场景中提取结构信息的前提下,我们引入了一种基于结构信息退化的质量评估框架。作为这个概念的一个具体例子,我们开发了一个结构相似度索引,并通过一组直观的例子展示了它的前景。...
Excel功能及实现 文章目录基础知识单元格表格数据透视表排序与筛选函数工资表的制作表格的制作与美化其他基础知识打开、关闭及保存 打开 打开新表 打开已建好的表 关闭 Alt+F4 保存 保存 另存为 Ctrl+S 文件-选项-保存-可设置自动恢复选项时间间隔界面 标题栏-快速访问工具栏,可添加自定义添加工具 功能区 功能区-右键-自定义功能区,可进行功能区命令的调整、添加、删除 状态栏-右键-自定义状态栏-可勾选计数等功能,方便数值的统计工作簿与工作表 关系:一个
Transformer翻译 仅为自己学习所用,如有错误,敬请指正。()中为看李沐老师视频所写。链接:https://www.bilibili.com/video/BV1pu411o7BE原文链接:https://arxiv.org/abs/1706.03762摘要:主流的序列转录模型是基于复杂的递归或卷积神经网络,其中包括编码器和解码器。性能最好的模型还通过注意机制连接编码器和解码器。我们提出了一种新的简单的网络架构,Transformer,它完全基于注意力机制,完全免除了循环和卷积。在两个机器翻译任务上的实验表明,这些模型在质
MySQL常见错误、解决方法及注意事项 Unknown column ‘字段名’ in ‘field list’ 错误select from (子表)子查询时没有select某个字段,但select了这个字段,就会出现错误,加上就可以了。select a,bfrom (select a,c from table where a>2);此时就会出现错误,因为b在字表中没有,加上c就可以了Column ‘id’ in field list is ambiguous表连接时有相同字段,但使用表字段时没有加表名,导致指代不明,..
数据挖掘相关算法 文章目录1. 数据获取1.1 数据挖掘的对象1.2数据挖掘的步骤1.3支持数据挖掘的关键技术1.4数据仓库1.5数据仓库的模型1.6典型的OLAP操作2 数据准备2.1 维归约/特征提取2.1.1决策树归约2.1.2粗糙集归约2.2 数据变换2.2.1归一化与模糊化2.2.2核函数2.3 数据压缩2.3.1 离散化2.3.2 回归2.3.3 主成分分析(PCA)2.3.4 离散小波变换(DWT)3 数据预处理3.1 数据清洗3.1.1 缺失值处理3.1.2 异常值处理3.1.3 数据去重3.1.4 数据去噪
数据分析报告 很多人在写数据分析报告的时候,往往更关注如何将报告做的更美观,例如:做漂亮的可视化图表,做很炫的PPT等。但当别人看你做的数据分析报告的时候,往往更关注这个报告对他是否有价值?价值是什么?值得花多少时间去看这个报告?报告的结论是否有正确的数据支持?基于结论形成的方案是否符合逻辑……今天我们就来说说如何撰写数据分析报告。一、 为什么要撰写数据分析报告数据分析报告实质上是一种沟通与交流的形式,主要目的在于将分析结果、可行性建议以及其他价值的信息传递给管理人员。它需要对数据进行适当的包装,让阅读者能对结果做出
统计学中的十几个数据分析方法 文章目录1. 描述统计1.1 集中趋势分析1.2 离中趋势分析1.3 相关分析2 推论统计3 正态性检验4 假设检验5 信度分析6. 列联表分析7 相关分析8 方差分析9 回归分析聚类分析11 判别分析12 主成分分析13 因子分析14 时间序列分析15 生存分析16 典型相关分析17 ROC分析18 其他分析方法1. 描述统计描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大
统计分析——假设检验、中心极限定理 1. 基本概念数据间类型的转换连续变量、有序变量、无序变量间的信息量越来越少,在丢弃一部分信息量的前提下,可以将变量向信息量减少的方向加以转换连续数据与有序分类数据年龄、客户贡献度→人为划分成若干级别有序分类数据与两分类数据售后满意度→按照某个级别一分为二统计量、总体参数与抽样误差刻画样本特征的统计指标称为统计量(statistic),如平均水平,离散水平刻画总体特征的指标称为总体参数(parameter),例如总体中某个指标的所有个体变量值的平均数称为总体均数统计研
数据分析面试题 在信息时代,数据分析已成为很多行业业务发展的必不可少的根据,根据本人面试经验与收集大佬经验总结了本文,有偏向业务层面的业务分析和数统思维,也有偏向技术层面的python、机器学习、深度学习和Linux,还有通用的HR面,供大家参考,如果能帮到大家一点点,将是我莫大的荣幸。...
AQI分析与预测 文章目录1. 背景2. 任务说明与知识要点3. 数据集描述4. 导入相关库5. 加载数据集6. 数据清洗6.1 缺失值处理6.2 异常值处理6.37. 数据分析7.1 空气质量最好/最差的5个城市7.2 全国城市的空气质量7.2.1 城市空气质量等级统计7.2.2 空气质量指数分布7.2.3 关于空气质量的验证7.2.3.1 中心极限定理7.2.3.2 置信区间7.2.3.3 假设检验——t检验7.2.4 临海域市的空气质量是否有别于内陆城市?7.2.5 空气质量主要受哪些因素影响7.2.5.1 绘制散点图
电商用户行为可视化分析 导入数据import numpy as npimport pandas as pdimport seaborn as snsimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)了解数据user = pd.read_.
Python可视化—pandas、matplotlib、seaborn 文章目录1. pandas1.1 导入相关库1.2 读取数据1.3 添加一列数据1.4 绘制折线图1.5 柱形图1.6 直方图1.7 箱线图1.8 密度图1.9 面积图1.10 散点图1.11 饼图2. matplotlib2.1 导入相关库2.2 读取txt数据2.3 数据处理2.4 进行用户消费趋势的分析(按月)2.5 用户个体消费分析2.6 用户消费行为2.7 新老客消费比2.8 用户分层2.9 用户购买周期(按订单)2.10 复购率和回购率分析3. seaborn1. pandas1.1 导
精通Matlab数字图像处理与识别 ; ; ; ; ; ; 文章目录1. 数字图像处理与识别2. MATLAB基础图像灰度变换和几何变换3. 图像的点运算4. 图像的几何运算图像增强:空域和频域5. 空域图像增强6. 频域图像增强小波变换7. 小波变换图像复原8. 图像复原彩色图像处理9. 彩色图像处理图像处理->图像识别10. 形态学图像处理11. 图像分割12. 特征提取模式识别13. 图像识别初步ANN、SVM14. ANN15. SVM...